These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26609817)

  • 1. First-Principle Calculations of Large Fullerenes.
    Calaminici P; Geudtner G; Köster AM
    J Chem Theory Comput; 2009 Jan; 5(1):29-32. PubMed ID: 26609817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From small fullerenes to the graphene limit: A harmonic force-field method for fullerenes and a comparison to density functional calculations for Goldberg-Coxeter fullerenes up to C980.
    Wirz LN; Tonner R; Hermann A; Sure R; Schwerdtfeger P
    J Comput Chem; 2016 Jan; 37(1):10-7. PubMed ID: 25821044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes.
    Chan B; Kawashima Y; Katouda M; Nakajima T; Hirao K
    J Am Chem Soc; 2016 Feb; 138(4):1420-9. PubMed ID: 26799740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene.
    Srinivasan SG; van Duin AC; Ganesh P
    J Phys Chem A; 2015 Jan; 119(4):571-80. PubMed ID: 25562718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density functional theory (DFT) and time-dependent density functional theory (TDDFT) study on optical transitions in oligo(p-phenylenevinylene)-fullerene dyads and the applicability to resonant energy transfer.
    Toivonen TL; Hukka TI
    J Phys Chem A; 2007 Jun; 111(22):4821-8. PubMed ID: 17477511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion-corrected DFT calculations on C(60)-porphyrin complexes.
    Liao MS; Watts JD; Huang MJ
    Phys Chem Chem Phys; 2009 Jun; 11(21):4365-74. PubMed ID: 19458840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative approaches to onion-like icosahedral fullerenes.
    Janner A
    Acta Crystallogr A Found Adv; 2014 Mar; 70(Pt 2):168-80. PubMed ID: 24572318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study of structural, electronic, and spectroscopic properties of D6d endohedral fullerenes: X@C24H12 (X=Li+, Na+, K+).
    Peng S; Li XJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):67-71. PubMed ID: 19243989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional two-photon absorptions and third-order nonlinear optical properties of I
    Zheng XL; Yang L; Shang B; Wang MQ; Niu Y; Li WQ; Tian WQ
    Phys Chem Chem Phys; 2020 Jul; 22(25):14225-14235. PubMed ID: 32555864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of the C2 fragmentation energies of higher fullerenes C80 and C82.
    Dolgonos GA; Peslherbe GH
    J Mol Model; 2007 Sep; 13(9):981-6. PubMed ID: 17588181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular potentials of the methane dimer calculated with Møller-Plesset perturbation theory and density functional theory.
    Li AH; Chao SD
    J Chem Phys; 2006 Sep; 125(9):094312. PubMed ID: 16965085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M4 @Si28 (M=Al,Ga): metal-encapsulated tetrahedral silicon fullerene.
    Gao Y; Zeng XC
    J Chem Phys; 2005 Nov; 123(20):204325. PubMed ID: 16351274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first-principles study of Ni
    Cervantes-Flores A; Cruz-Martínez H; Solorza-Feria O; Calaminici P
    J Mol Model; 2017 May; 23(5):161. PubMed ID: 28409287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene.
    Manna AK; Pati SK
    Chemphyschem; 2013 Jun; 14(9):1844-52. PubMed ID: 23616400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, stability, and NMR properties of lower fullerenes C38-C50 and azafullerene C44N6.
    Sun G; Nicklaus MC; Xie RH
    J Phys Chem A; 2005 May; 109(20):4617-22. PubMed ID: 16833800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Polariton Modes in Fullerenes.
    Matsko NL; Kruglov IA
    J Phys Chem Lett; 2021 Dec; 12(49):11873-11877. PubMed ID: 34874724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organometallic derivatives of fullerenes: a DFT study of (eta2-Cx)[Pt(PH3)2]n (x = 60, 70, 84; n = 1-6).
    Campanera JM; Muñoz J; Vázquez J; Bo C; Poblet JM
    Inorg Chem; 2004 Oct; 43(21):6815-21. PubMed ID: 15476382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fullerene C
    Tomić BT; Abraham CS; Pelemiš S; Armaković SJ; Armaković S
    Phys Chem Chem Phys; 2019 Nov; 21(42):23329-23337. PubMed ID: 31616869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the electronic structure of Be clusters.
    Cerowski V; Rao BK; Khanna SN; Jena P; Ishii S; Ohno K; Kawazoe Y
    J Chem Phys; 2005 Aug; 123(7):074329. PubMed ID: 16229592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.