These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26609848)

  • 1. Comparison of the Properties of Bent and Straight Single-Walled Carbon Nanotube Intramolecular Junctions.
    Xue B; Shao X; Cai W
    J Chem Theory Comput; 2009 Jun; 5(6):1554-9. PubMed ID: 26609848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of lanthanide double-decker phthalocyanines on single-walled carbon nanotubes: structural changes and electronic properties as studied by density functional theory.
    Bolívar-Pineda LM; Mendoza-Domínguez CU; Basiuk VA
    J Mol Model; 2023 Apr; 29(5):158. PubMed ID: 37099146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of carbenes to the sidewalls of single-walled carbon nanotubes.
    Bettinger HF
    Chemistry; 2006 May; 12(16):4372-9. PubMed ID: 16555363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence spectrum using DFT for double-walled carbon nanotubes with metallic constituents.
    Victoria APR; de la Luz ADH; Juárez JM; Espinosa-Torres ND; Robles-Águila MJ; López JAL; Juárez-Díaz G
    J Mol Model; 2019 Aug; 25(9):273. PubMed ID: 31451950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube.
    Aghashiri A; Fotooh FK; Hashemian S
    J Mol Model; 2019 Jun; 25(7):185. PubMed ID: 31183580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-Unrestricted Calculations of Bare-Edged Nanographenes Using DFT and Many-Body Perturbation Theory.
    Pollet R; Amara H
    J Chem Theory Comput; 2009 Jul; 5(7):1719-22. PubMed ID: 26609996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT studies of low concentration substitutional doping of transition-metals on single-walled carbon nanotube surface.
    Mashapa MG; Ray SS
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8180-4. PubMed ID: 21121313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically resolved single-walled carbon nanotube intramolecular junctions.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Jan; 291(5501):97-100. PubMed ID: 11141554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Preparation of Carbon Nanotube Intramolecular Junctions on Structured Substrates.
    An J; Zhan Z; Sun G; Mohan HK; Zhou J; Kim YJ; Zheng L
    Sci Rep; 2016 Dec; 6():38032. PubMed ID: 27905564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles study of CN carbon nitride nanotubes.
    Chai G; Lin C; Zhang M; Wang J; Cheng W
    Nanotechnology; 2010 May; 21(19):195702. PubMed ID: 20400819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid nanotube-graphene junctions: spin degeneracy breaking and tunable electronic structure.
    Qu ZB; Gu L; Li M; Shi G; Zhuang GL
    Phys Chem Chem Phys; 2013 Dec; 15(46):20281-7. PubMed ID: 24166658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional changes as a function of charge injection in single-walled carbon nanotubes.
    Sun G; Kürti J; Kertesz M; Baughman RH
    J Am Chem Soc; 2002 Dec; 124(50):15076-80. PubMed ID: 12475352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper-diamonds and dodecahedral architectures by tetrapodal carbon nanotube junctions.
    Nagy K; Nagy CL; Tasnadi E; Katona G; Diudea MV
    Acta Chim Slov; 2013; 60(1):1-4. PubMed ID: 23841325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2012 Jan; 14(3):1253-61. PubMed ID: 22134488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.