BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26609850)

  • 1. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.
    Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2009 Jun; 5(6):1573-84. PubMed ID: 26609850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.
    Qi HW; Leverentz HR; Truhlar DG
    J Phys Chem A; 2013 May; 117(21):4486-99. PubMed ID: 23627665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically Embedded Many-Body Expansion for Simulations.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):1-6. PubMed ID: 26619974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers.
    Dahlke EE; Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):33-41. PubMed ID: 26619977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jul; 3(4):1342-8. PubMed ID: 26633207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatically embedded many-body method for dipole moments, partial atomic charges, and charge transfer.
    Leverentz HR; Maerzke KA; Keasler SJ; Siepmann JI; Truhlar DG
    Phys Chem Chem Phys; 2012 Jun; 14(21):7669-78. PubMed ID: 22425812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatically Embedded Molecular Tailoring Approach and Validation for Peptides.
    Isegawa M; Wang B; Truhlar DG
    J Chem Theory Comput; 2013 Mar; 9(3):1381-93. PubMed ID: 26587600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment and Validation of the Electrostatically Embedded Many-Body Expansion for Metal-Ligand Bonding.
    Hua D; Leverentz HR; Amin EA; Truhlar DG
    J Chem Theory Comput; 2011 Feb; 7(2):251-5. PubMed ID: 26596148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point charge embedding for ONIOM excited states calculations.
    Biancardi A; Barnes J; Caricato M
    J Chem Phys; 2016 Dec; 145(22):224109. PubMed ID: 27984901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.
    Kurbanov EK; Leverentz HR; Truhlar DG; Amin EA
    J Chem Theory Comput; 2012 Jan; 8(1):1-5. PubMed ID: 22639556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedded density functional theory for covalently bonded and strongly interacting subsystems.
    Goodpaster JD; Barnes TA; Miller TF
    J Chem Phys; 2011 Apr; 134(16):164108. PubMed ID: 21528951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine.
    DePalma JW; Doren DJ; Johnston MV
    J Phys Chem A; 2014 Jul; 118(29):5464-73. PubMed ID: 24963535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.