These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 26609855)

  • 1. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
    Harvey MJ; Giupponi G; Fabritiis GD
    J Chem Theory Comput; 2009 Jun; 5(6):1632-9. PubMed ID: 26609855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware.
    Harvey MJ; De Fabritiis G
    J Chem Theory Comput; 2009 Sep; 5(9):2371-7. PubMed ID: 26616618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
    Salomon-Ferrer R; Götz AW; Poole D; Le Grand S; Walker RC
    J Chem Theory Comput; 2013 Sep; 9(9):3878-88. PubMed ID: 26592383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations.
    Graen T; Hoefling M; Grubmüller H
    J Chem Theory Comput; 2014 Dec; 10(12):5505-12. PubMed ID: 26583233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.
    Götz AW; Williamson MJ; Xu D; Poole D; Le Grand S; Walker RC
    J Chem Theory Comput; 2012 May; 8(5):1542-1555. PubMed ID: 22582031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput all-atom molecular dynamics simulations using distributed computing.
    Buch I; Harvey MJ; Giorgino T; Anderson DP; De Fabritiis G
    J Chem Inf Model; 2010 Mar; 50(3):397-403. PubMed ID: 20199097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks.
    Huang J; Lemkul JA; Eastman PK; MacKerell AD
    J Comput Chem; 2018 Aug; 39(21):1682-1689. PubMed ID: 29727037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of aqueous ions at the liquid-vapor interface accelerated using graphics processors.
    Bauer BA; Davis JE; Taufer M; Patel S
    J Comput Chem; 2011 Feb; 32(3):375-85. PubMed ID: 20862755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Discovery and Molecular Dynamics: Methods, Applications and Perspective Beyond the Second Timescale.
    Martínez-Rosell G; Giorgino T; Harvey MJ; de Fabritiis G
    Curr Top Med Chem; 2017; 17(23):2617-2625. PubMed ID: 28413955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models.
    Bjelkmar P; Larsson P; Cuendet MA; Hess B; Lindahl E
    J Chem Theory Comput; 2010 Feb; 6(2):459-66. PubMed ID: 26617301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks:  Application to the AMBER99SB Force Field.
    Showalter SA; Brüschweiler R
    J Chem Theory Comput; 2007 May; 3(3):961-75. PubMed ID: 26627416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-timescale molecular dynamics simulations of protein structure and function.
    Klepeis JL; Lindorff-Larsen K; Dror RO; Shaw DE
    Curr Opin Struct Biol; 2009 Apr; 19(2):120-7. PubMed ID: 19361980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating molecular modeling applications with graphics processors.
    Stone JE; Phillips JC; Freddolino PL; Hardy DJ; Trabuco LG; Schulten K
    J Comput Chem; 2007 Dec; 28(16):2618-40. PubMed ID: 17894371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.
    Kazachenko S; Giovinazzo M; Hall KW; Cann NM
    J Comput Chem; 2015 Sep; 36(24):1787-804. PubMed ID: 26174435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength.
    Zhang C; Raugei S; Eisenberg B; Carloni P
    J Chem Theory Comput; 2010 Jul; 6(7):2167-75. PubMed ID: 26615943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BLaDE: A Basic Lambda Dynamics Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations.
    Hayes RL; Buckner J; Brooks CL
    J Chem Theory Comput; 2021 Nov; 17(11):6799-6807. PubMed ID: 34709046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
    Luehr N; Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2011 Apr; 7(4):949-54. PubMed ID: 26606344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics.
    Ufimtsev IS; Martinez TJ
    J Chem Theory Comput; 2009 Oct; 5(10):2619-28. PubMed ID: 26631777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.