These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 26609922)
1. On the phase-field modelling of a miscible liquid/liquid boundary. Xie R; Vorobev A J Colloid Interface Sci; 2016 Feb; 464():48-58. PubMed ID: 26609922 [TBL] [Abstract][Full Text] [Related]
2. Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases. Zagvozkin T; Vorobev A; Lyubimova T Phys Rev E; 2019 Aug; 100(2-1):023103. PubMed ID: 31574712 [TBL] [Abstract][Full Text] [Related]
3. Phase-field modelling of a miscible system in spinning droplet tensiometer. Vorobev A; Boghi A J Colloid Interface Sci; 2016 Nov; 482():193-204. PubMed ID: 27501043 [TBL] [Abstract][Full Text] [Related]
4. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes. Stevar MS; Vorobev A J Colloid Interface Sci; 2012 Oct; 383(1):184-97. PubMed ID: 22809545 [TBL] [Abstract][Full Text] [Related]
5. Phase-field modelling of gravity-capillary waves on a miscible interface. Vorobev A; Ivantsov A; Lyubimova T Eur Phys J E Soft Matter; 2017 Nov; 40(11):99. PubMed ID: 29188486 [TBL] [Abstract][Full Text] [Related]
6. Diffusion-Driven Dissolution or Growth of a Liquid Drop Embedded in a Continuous Phase of Another Liquid via Phase-Field Ternary Mixture Model. Lamorgese A; Mauri R Langmuir; 2017 Nov; 33(45):13125-13132. PubMed ID: 28981279 [TBL] [Abstract][Full Text] [Related]
7. Dissolution or Growth of a Liquid Drop via Phase-Field Ternary Mixture Model Based on the Non-Random, Two-Liquid Equation. Lamorgese A; Mauri R Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265216 [TBL] [Abstract][Full Text] [Related]
8. Linear stability analysis of a horizontal phase boundary separating two miscible liquids. Kheniene A; Vorobev A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022404. PubMed ID: 24032846 [TBL] [Abstract][Full Text] [Related]
9. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids. Tóth GI; Zarifi M; Kvamme B Phys Rev E; 2016 Jan; 93(1):013126. PubMed ID: 26871173 [TBL] [Abstract][Full Text] [Related]
10. Linear stability of a horizontal phase boundary subjected to shear motion. Kheniene A; Vorobev A Eur Phys J E Soft Matter; 2015 Jul; 38(7):77. PubMed ID: 26174431 [TBL] [Abstract][Full Text] [Related]
11. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Vorobev A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581 [TBL] [Abstract][Full Text] [Related]
12. Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures. Schimpf ME; Semenov SN Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031202. PubMed ID: 15524514 [TBL] [Abstract][Full Text] [Related]
13. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
14. Possibility of non-Fickian mixing at concentration interface between stratified suspensions. Mori M; Tai T; Nishimura K; Harada S; Yamamoto Y J Colloid Interface Sci; 2020 Jul; 571():13-20. PubMed ID: 32182496 [TBL] [Abstract][Full Text] [Related]
15. Bridging length and time scales in sheared demixing systems: from the Cahn-Hilliard to the Doi-Ohta model. Jelić A; Ilg P; Ottinger HC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011131. PubMed ID: 20365347 [TBL] [Abstract][Full Text] [Related]
16. Mixing generated by Faraday instability between miscible liquids. Amiroudine S; Zoueshtiagh F; Narayanan R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016326. PubMed ID: 22400676 [TBL] [Abstract][Full Text] [Related]
18. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
19. Numerical investigation of the spreading-receding cycle in a concentration-dependent lattice gas automaton diffusion model. Küntz M; Lavallée P Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066703. PubMed ID: 16089907 [TBL] [Abstract][Full Text] [Related]
20. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments. Budroni MA; Thomas C; De Wit A Phys Chem Chem Phys; 2017 Mar; 19(11):7936-7946. PubMed ID: 28262876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]