These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26609979)

  • 1. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians.
    Maurice R; Bastardis R; Graaf Cd; Suaud N; Mallah T; Guihéry N
    J Chem Theory Comput; 2009 Nov; 5(11):2977-84. PubMed ID: 26609979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of the spin Hamiltonian parameters in Co(II)S4 complexes, using density functional theory and correlated ab initio methods.
    Maganas D; Sottini S; Kyritsis P; Groenen EJ; Neese F
    Inorg Chem; 2011 Sep; 50(18):8741-54. PubMed ID: 21848258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry.
    Maganas D; Krzystek J; Ferentinos E; Whyte AM; Robertson N; Psycharis V; Terzis A; Neese F; Kyritsis P
    Inorg Chem; 2012 Jul; 51(13):7218-31. PubMed ID: 22697407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large magnetic anisotropy in pentacoordinate Ni(II) complexes.
    Rebilly JN; Charron G; Rivière E; Guillot R; Barra AL; Serrano MD; van Slageren J; Mallah T
    Chemistry; 2008; 14(4):1169-77. PubMed ID: 18000920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of nickel(II) and zinc(II) borohydrides from spectroscopic measurements and computational modeling.
    Desrochers PJ; Sutton CA; Abrams ML; Ye S; Neese F; Telser J; Ozarowski A; Krzystek J
    Inorg Chem; 2012 Mar; 51(5):2793-805. PubMed ID: 22335547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes.
    Maurice R; de Graaf C; Guihéry N
    J Chem Phys; 2010 Aug; 133(8):084307. PubMed ID: 20815569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purely Spectroscopic Determination of the Spin Hamiltonian Parameters in High-Spin Six-Coordinated Cobalt(II) Complexes with Large Zero-Field Splitting.
    Misochko EY; Akimov AV; Korchagin DV; Nehrkorn J; Ozerov M; Palii AV; Clemente-Juan JM; Aldoshin SM
    Inorg Chem; 2019 Dec; 58(24):16434-16444. PubMed ID: 31749359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches.
    Duboc C; Ganyushin D; Sivalingam K; Collomb MN; Neese F
    J Phys Chem A; 2010 Oct; 114(39):10750-8. PubMed ID: 20828179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study.
    Neese F
    J Am Chem Soc; 2006 Aug; 128(31):10213-22. PubMed ID: 16881651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes.
    Atanasov M; Ganyushin D; Pantazis DA; Sivalingam K; Neese F
    Inorg Chem; 2011 Aug; 50(16):7460-77. PubMed ID: 21744845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2017 Aug; 13(8):3731-3745. PubMed ID: 28636359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of sizable ZFS and magnetic tensors of high spin metallocomplexes.
    Yamane T; Sugisaki K; Nakagawa T; Matsuoka H; Nishio T; Kinjyo S; Mori N; Yokoyama S; Kawashima C; Yokokura N; Sato K; Kanzaki Y; Shiomi D; Toyota K; Dolphin DH; Lin WC; McDowell CA; Tadokoro M; Takui T
    Phys Chem Chem Phys; 2017 Sep; 19(36):24769-24791. PubMed ID: 28868562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of the Zero-Field Splitting in Mononuclear Octahedral Mn(IV) Complexes: A Combined Experimental and Theoretical Investigation.
    Zlatar M; Gruden M; Vassilyeva OY; Buvaylo EA; Ponomarev AN; Zvyagin SA; Wosnitza J; Krzystek J; Garcia-Fernandez P; Duboc C
    Inorg Chem; 2016 Feb; 55(3):1192-201. PubMed ID: 26745448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the magnetic anisotropy in heptacoordinate Ni(II) and Co(II) complexes.
    Ruamps R; Batchelor LJ; Maurice R; Gogoi N; Jiménez-Lozano P; Guihéry N; de Graaf C; Barra AL; Sutter JP; Mallah T
    Chemistry; 2013 Jan; 19(3):950-6. PubMed ID: 23180690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.
    Ghassemi Tabrizi S; Arbuznikov AV; Kaupp M
    Chemistry; 2018 Mar; 24(18):4689-4702. PubMed ID: 29345739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron magnetic resonance data on high-spin Mn(III; S=2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach.
    Tadyszak K; Rudowicz C; Ohta H; Sakurai T
    J Inorg Biochem; 2017 Oct; 175():36-46. PubMed ID: 28692887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(III) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit.
    Retegan M; Collomb MN; Neese F; Duboc C
    Phys Chem Chem Phys; 2013 Jan; 15(1):223-34. PubMed ID: 23160651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ¹H Chemical Shifts in Paramagnetic Co(II) Pyrazolylborate Complexes: A First-Principles Study.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2015 Apr; 11(4):1683-91. PubMed ID: 26574378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters.
    Ganyushin D; Gilka N; Taylor PR; Marian CM; Neese F
    J Chem Phys; 2010 Apr; 132(14):144111. PubMed ID: 20405989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.
    Schaefle N; Sharp R
    J Chem Phys; 2004 Sep; 121(11):5387-94. PubMed ID: 15352832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.