These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26610017)

  • 1. Large Protein Dynamics Described by Hierarchical-Component Mode Synthesis.
    Kim JI; Na S; Eom K
    J Chem Theory Comput; 2009 Jul; 5(7):1931-9. PubMed ID: 26610017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics.
    Kim JI; Na S; Eom K
    J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-graining of protein structures for the normal mode studies.
    Eom K; Baek SC; Ahn JH; Na S
    J Comput Chem; 2007 Jun; 28(8):1400-10. PubMed ID: 17330878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate normal mode analysis based on vibrational subsystem analysis with high accuracy and efficiency.
    Hafner J; Zheng W
    J Chem Phys; 2009 May; 130(19):194111. PubMed ID: 19466825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Coarse-Graining via Normal Mode Analysis.
    Xia F; Lu L
    J Chem Theory Comput; 2012 Nov; 8(11):4797-806. PubMed ID: 26605632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models.
    Zhang Z; Pfaendtner J; Grafmüller A; Voth GA
    Biophys J; 2009 Oct; 97(8):2327-37. PubMed ID: 19843465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal mode analysis of proteins: a comparison of rigid cluster modes with C(alpha) coarse graining.
    Schuyler AD; Chirikjian GS
    J Mol Graph Model; 2004 Jan; 22(3):183-93. PubMed ID: 14629977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analysis to uncover the structural communication in GPCRs.
    Fanelli F; Felline A; Raimondi F
    Methods Cell Biol; 2013; 117():43-61. PubMed ID: 24143971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bloch mode synthesis: ultrafast methodology for elastic band-structure calculations.
    Krattiger D; Hussein MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063306. PubMed ID: 25615221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient determination of low-frequency normal modes of large protein structures by cluster-NMA.
    Schuyler AD; Chirikjian GS
    J Mol Graph Model; 2005 Sep; 24(1):46-58. PubMed ID: 15990344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids.
    Dykeman EC; Sankey OF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021918. PubMed ID: 20365606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient prediction of protein conformational pathways based on the hybrid elastic network model.
    Seo S; Jang Y; Qian P; Liu WK; Choi JB; Lim BS; Kim MK
    J Mol Graph Model; 2014 Feb; 47():25-36. PubMed ID: 24296313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale network model for large protein dynamics.
    Jang H; Na S; Eom K
    J Chem Phys; 2009 Dec; 131(24):245106. PubMed ID: 20059118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging between normal mode analysis and elastic network models.
    Na H; Song G
    Proteins; 2014 Sep; 82(9):2157-68. PubMed ID: 24692201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.
    Wako H; Endo S
    Biophys Chem; 2011 Dec; 159(2-3):257-66. PubMed ID: 21807453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and accurate computation schemes for evaluating vibrational entropy of proteins.
    Xu B; Shen H; Zhu X; Li G
    J Comput Chem; 2011 Nov; 32(15):3188-93. PubMed ID: 21953554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study.
    Raimondi F; Felline A; Seeber M; Mariani S; Fanelli F
    J Chem Theory Comput; 2013 May; 9(5):2504-18. PubMed ID: 26583738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
    Palmer DS; Jensen F
    Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.