These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cost function network-based design of protein-protein interactions: predicting changes in binding affinity. Viricel C; de Givry S; Schiex T; Barbe S Bioinformatics; 2018 Aug; 34(15):2581-2589. PubMed ID: 29474517 [TBL] [Abstract][Full Text] [Related]
6. A multi-queue branch-and-bound algorithm for anytime optimal search with biological applications. Lathrop RH; Sazhin A; Sun Y; Steffin N; Irani SS Genome Inform; 2001; 12():73-82. PubMed ID: 11791226 [TBL] [Abstract][Full Text] [Related]
7. Minimizing and learning energy functions for side-chain prediction. Yanover C; Schueler-Furman O; Weiss Y J Comput Biol; 2008 Sep; 15(7):899-911. PubMed ID: 18707538 [TBL] [Abstract][Full Text] [Related]
8. A new framework for computational protein design through cost function network optimization. Traoré S; Allouche D; André I; de Givry S; Katsirelos G; Schiex T; Barbe S Bioinformatics; 2013 Sep; 29(17):2129-36. PubMed ID: 23842814 [TBL] [Abstract][Full Text] [Related]
9. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Georgiev I; Lilien RH; Donald BR J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294 [TBL] [Abstract][Full Text] [Related]
10. Protein design using continuous rotamers. Gainza P; Roberts KE; Donald BR PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426 [TBL] [Abstract][Full Text] [Related]
11. Variable Neighborhood Search with Cost Function Networks To Solve Large Computational Protein Design Problems. Charpentier A; Mignon D; Barbe S; Cortes J; Schiex T; Simonson T; Allouche D J Chem Inf Model; 2019 Jan; 59(1):127-136. PubMed ID: 30380857 [TBL] [Abstract][Full Text] [Related]
12. Pairwise decomposition of an MMGBSA energy function for computational protein design. Gaillard T; Simonson T J Comput Chem; 2014 Jul; 35(18):1371-87. PubMed ID: 24854675 [TBL] [Abstract][Full Text] [Related]
13. Exact rotamer optimization for protein design. Gordon DB; Hom GK; Mayo SL; Pierce NA J Comput Chem; 2003 Jan; 24(2):232-43. PubMed ID: 12497602 [TBL] [Abstract][Full Text] [Related]
14. Improved energy bound accuracy enhances the efficiency of continuous protein design. Roberts KE; Donald BR Proteins; 2015 Jun; 83(6):1151-64. PubMed ID: 25846627 [TBL] [Abstract][Full Text] [Related]
15. HOPE: a homotopy optimization method for protein structure prediction. Dunlavy DM; O'Leary DP; Klimov D; Thirumalai D J Comput Biol; 2005 Dec; 12(10):1275-88. PubMed ID: 16379534 [TBL] [Abstract][Full Text] [Related]
16. Fast search algorithms for computational protein design. Traoré S; Roberts KE; Allouche D; Donald BR; André I; Schiex T; Barbe S J Comput Chem; 2016 May; 37(12):1048-58. PubMed ID: 26833706 [TBL] [Abstract][Full Text] [Related]
17. Optimal HP configurations of proteins by combining local search with elastic net algorithm. Guo YZ; Feng EM; Wang Y J Biochem Biophys Methods; 2007 Apr; 70(3):335-40. PubMed ID: 16982100 [TBL] [Abstract][Full Text] [Related]
18. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. Voigt CA; Gordon DB; Mayo SL J Mol Biol; 2000 Jun; 299(3):789-803. PubMed ID: 10835284 [TBL] [Abstract][Full Text] [Related]
19. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
20. Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design. Zhang N; Zeng C J Comput Chem; 2008 Aug; 29(11):1762-71. PubMed ID: 18351599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]