These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26610112)
1. Charges for Large Scale Binding Free Energy Calculations with the Linear Interaction Energy Method. Wallin G; Nervall M; Carlsson J; Åqvist J J Chem Theory Comput; 2009 Feb; 5(2):380-95. PubMed ID: 26610112 [TBL] [Abstract][Full Text] [Related]
2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
3. Hydration Free Energies of Multifunctional Nitroaromatic Compounds. Ahmed A; Sandler SI J Chem Theory Comput; 2013 Jun; 9(6):2774-85. PubMed ID: 26583868 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. Shivakumar D; Williams J; Wu Y; Damm W; Shelley J; Sherman W J Chem Theory Comput; 2010 May; 6(5):1509-19. PubMed ID: 26615687 [TBL] [Abstract][Full Text] [Related]
5. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of free energies of hydration using CM1 and CM3 atomic charges. Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325 [TBL] [Abstract][Full Text] [Related]
7. Binding affinity prediction with different force fields: examination of the linear interaction energy method. Almlöf M; Brandsdal BO; Aqvist J J Comput Chem; 2004 Jul; 25(10):1242-54. PubMed ID: 15139037 [TBL] [Abstract][Full Text] [Related]
8. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations. Kimura SR; Rajamani R; Langley DR J Chem Phys; 2011 Dec; 135(23):231101. PubMed ID: 22191857 [TBL] [Abstract][Full Text] [Related]
9. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems. Isaksen GV; Andberg TA; Åqvist J; Brandsdal BO J Mol Graph Model; 2015 Jul; 60():15-23. PubMed ID: 26080356 [TBL] [Abstract][Full Text] [Related]
10. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies. Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453 [TBL] [Abstract][Full Text] [Related]
11. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. Garrido NM; Queimada AJ; Jorge M; Macedo EA; Economou IG J Chem Theory Comput; 2009 Sep; 5(9):2436-46. PubMed ID: 26616624 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two simulation methods to compute solvation free energies and partition coefficients. Yang L; Ahmed A; Sandler SI J Comput Chem; 2013 Feb; 34(4):284-93. PubMed ID: 23109246 [TBL] [Abstract][Full Text] [Related]
13. Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. Carlsson J; Boukharta L; Aqvist J J Med Chem; 2008 May; 51(9):2648-56. PubMed ID: 18410085 [TBL] [Abstract][Full Text] [Related]
14. Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies. Almlöf M; Carlsson J; Åqvist J J Chem Theory Comput; 2007 Nov; 3(6):2162-75. PubMed ID: 26636209 [TBL] [Abstract][Full Text] [Related]
15. In silico prediction of drug solubility: 4. Will simple potentials suffice? Lüder K; Lindfors L; Westergren J; Nordholm S; Persson R; Pedersen M J Comput Chem; 2009 Sep; 30(12):1859-71. PubMed ID: 19115279 [TBL] [Abstract][Full Text] [Related]
16. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. Shivakumar D; Deng Y; Roux B J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601 [TBL] [Abstract][Full Text] [Related]
17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
18. An improved OPLS-AA force field for carbohydrates. Kony D; Damm W; Stoll S; Van Gunsteren WF J Comput Chem; 2002 Nov; 23(15):1416-29. PubMed ID: 12370944 [TBL] [Abstract][Full Text] [Related]
19. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204 [TBL] [Abstract][Full Text] [Related]
20. Optimal scaling factors for CM1 and CM3 atomic charges in RM1-based aqueous simulations. Vilseck JZ; Sambasivarao SV; Acevedo O J Comput Chem; 2011 Oct; 32(13):2836-42. PubMed ID: 21732390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]