BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26610128)

  • 1. Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2011 May; 7(5):1336-43. PubMed ID: 26610128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Energy Gradients and Infrared Vibrational Spectra through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2015 Mar; 11(3):950-61. PubMed ID: 26579749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Beckett D; Raghavachari K
    J Chem Theory Comput; 2015 Sep; 11(9):4238-47. PubMed ID: 26575919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-Overlapping-Body (MOB) Expansion: A Generalized Many Body Expansion for Nondisjoint Monomers in Molecular Fragmentation Calculations of Covalent Molecules.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2012 Aug; 8(8):2669-75. PubMed ID: 26592112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilevel Fragment-Based Approach (MFBA): A Novel Hybrid Computational Method for the Study of Large Molecules.
    Řezáč J; Salahub DR
    J Chem Theory Comput; 2010 Jan; 6(1):91-9. PubMed ID: 26614322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.
    Ramabhadran RO; Raghavachari K
    Acc Chem Res; 2014 Dec; 47(12):3596-604. PubMed ID: 25393551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.
    Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2016 Feb; 12(2):585-94. PubMed ID: 26760444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillator Strengths in ONIOM Excited State Calculations.
    Caricato M; Vreven T; Trucks GW; Frisch MJ
    J Chem Theory Comput; 2011 Jan; 7(1):180-7. PubMed ID: 26606231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.
    Saha A; Raghavachari K
    J Chem Theory Comput; 2015 May; 11(5):2012-23. PubMed ID: 26574406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined fragmentation and systematic molecular fragmentation methods.
    Collins MA; Cvitkovic MW; Bettens RP
    Acc Chem Res; 2014 Sep; 47(9):2776-85. PubMed ID: 24972052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Reaction Energy Profiles Using the Molecules-in-Molecules Fragmentation-Based Approach.
    Gupta AK; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Jul; 15(7):3991-4002. PubMed ID: 31181886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes.
    Gastegger M; Kauffmann C; Behler J; Marquetand P
    J Chem Phys; 2016 May; 144(19):194110. PubMed ID: 27208939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Fragmentation Method: A Simple Method for Fragmentation of Large Molecules.
    Le HA; Tan HJ; Ouyang JF; Bettens RP
    J Chem Theory Comput; 2012 Feb; 8(2):469-78. PubMed ID: 26596597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM:QM embedding using electronic densities within an ONIOM framework: energies and analytic gradients.
    Hratchian HP; Krukau AV; Parandekar PV; Frisch MJ; Raghavachari K
    J Chem Phys; 2011 Jul; 135(1):014105. PubMed ID: 21744886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.