These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26610426)

  • 1. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.
    Cao Y; Fang D; Liu R; Jiang M; Zhang H; Li G; Luo Z; Liu X; Xu J; Xu W; Xiong C
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27685-93. PubMed ID: 26610426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties.
    Wang C; Fang D; Wang H; Cao Y; Xu W; Liu X; Luo Z; Li G; Jiang M; Xiong C
    Sci Rep; 2016 Feb; 6():20826. PubMed ID: 26860692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes.
    Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T
    Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.
    Wang B; Li S; Wu X; Liu J; Tian W
    Phys Chem Chem Phys; 2016 Jan; 18(2):908-15. PubMed ID: 26648554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.
    Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.
    Sun Z; Ai W; Liu J; Qi X; Wang Y; Zhu J; Zhang H; Yu T
    Nanoscale; 2014 Jun; 6(12):6563-8. PubMed ID: 24796419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Array of TiN@Pt
    Luo WB; Pham TV; Guo HP; Liu HK; Dou SX
    ACS Nano; 2017 Feb; 11(2):1747-1754. PubMed ID: 28128929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries.
    Cao Y; Chai D; Luo Z; Jiang M; Xu W; Xiong C; Li S; Liu H; Fang D
    J Colloid Interface Sci; 2017 Jul; 498():210-216. PubMed ID: 28324727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries.
    Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Iron Cobaltate Nanoneedles Array on Nickel Foam as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance.
    Liu L; Zhang H; Mu Y; Yang J; Wang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1351-9. PubMed ID: 26713359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries.
    Meng X; Deng D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6867-74. PubMed ID: 25749298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Performance and Storage Mechanism of Ag
    Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C
    Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of SiO
    Li W; Wang F; Ma M; Zhou J; Liu Y; Chen Y
    RSC Adv; 2018 Sep; 8(59):33652-33658. PubMed ID: 35548784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.
    Balogun MS; Qiu W; Jian J; Huang Y; Luo Y; Yang H; Liang C; Lu X; Tong Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23205-15. PubMed ID: 26439604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries.
    Mueller F; Bresser D; Minderjahn N; Kalhoff J; Menne S; Krueger S; Winter M; Passerini S
    Dalton Trans; 2014 Oct; 43(40):15013-21. PubMed ID: 25043460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid, solvent-free protocol for the synthesis of germanium nanowire lithium-ion anodes with a long cycle life and high rate capability.
    Mullane E; Kennedy T; Geaney H; Ryan KM
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18800-7. PubMed ID: 25333500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability.
    Ma F; Yuan A; Xu J; Hu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.