BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26610522)

  • 1. UAVs Task and Motion Planning in the Presence of Obstacles and Prioritized Targets.
    Gottlieb Y; Shima T
    Sensors (Basel); 2015 Nov; 15(11):29734-64. PubMed ID: 26610522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles.
    Wu Q; Shen X; Jin Y; Chen Z; Li S; Khan AH; Chen D
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internet-Of-Things in Motion: A UAV Coalition Model for Remote Sensing in Smart Cities.
    Ismail A; Bagula BA; Tuyishimire E
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint.
    Behjati M; Nordin R; Zulkifley MA; Abdullah NF
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.
    Avellar GS; Pereira GA; Pimenta LC; Iscold P
    Sensors (Basel); 2015 Nov; 15(11):27783-803. PubMed ID: 26540055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves
    Cai W; Zhang M; Zheng YR
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28696377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams.
    Jin Y; Liao Y; Minai AA; Polycarpou MM
    IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):571-87. PubMed ID: 16761811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.
    Liu Z; Gao X; Fu X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas.
    Xiong H; Yu B; Yi Q; He C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.
    Zhang J; Jia L; Niu S; Zhang F; Tong L; Zhou X
    Sensors (Basel); 2015 Jun; 15(6):13874-98. PubMed ID: 26076404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets Based on Modified Symbiotic Organisms Search Algorithm.
    Chen HX; Nan Y; Yang Y
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Globally Guided Deep V-Network-Based Motion Planning Algorithm for Fixed-Wing Unmanned Aerial Vehicles.
    Du H; You M; Zhao X
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments.
    Kong X; Zhou Y; Li Z; Wang S
    Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
    Wang X; Jiang P; Li D; Sun T
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
    Wu PP; Campbell D; Merz T
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):621-34. PubMed ID: 20851795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative surveillance and pursuit using unmanned aerial vehicles and unattended ground sensors.
    Las Fargeas J; Kabamba P; Girard A
    Sensors (Basel); 2015 Jan; 15(1):1365-88. PubMed ID: 25591168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centralized Unmanned Aerial Vehicle Mesh Network Placement Scheme: A Multi-Objective Evolutionary Algorithm Approach.
    Sabino S; Horta N; Grilo A
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Simulated Annealing Based Strategy for Balanced UAV Task Assignment and Path Planning.
    Huo L; Zhu J; Wu G; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.