BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26610700)

  • 1. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite.
    Bongers M; Chrysanthopoulos PK; Behrendorff JB; Hodson MP; Vickers CE; Nielsen LK
    Microb Cell Fact; 2015 Nov; 14():193. PubMed ID: 26610700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production.
    Zhou K; Zou R; Stephanopoulos G; Too HP
    PLoS One; 2012; 7(11):e47513. PubMed ID: 23133596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein.
    Seemann M; Bui BT; Wolff M; Tritsch D; Campos N; Boronat A; Marquet A; Rohmer M
    Angew Chem Int Ed Engl; 2002 Nov; 41(22):4337-9. PubMed ID: 12434382
    [No Abstract]   [Full Text] [Related]  

  • 5. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum.
    Singh VK; Ghosh I
    FEBS Lett; 2013 Sep; 587(17):2806-17. PubMed ID: 23816706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli.
    King JR; Woolston BM; Stephanopoulos G
    ACS Synth Biol; 2017 Jul; 6(7):1416-1426. PubMed ID: 28375628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli.
    Farmer WR; Liao JC
    Biotechnol Prog; 2001; 17(1):57-61. PubMed ID: 11170480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.
    Jung J; Lim JH; Kim SY; Im DK; Seok JY; Lee SV; Oh MK; Jung GY
    Metab Eng; 2016 Nov; 38():401-408. PubMed ID: 27725264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase.
    Matthews PD; Wurtzel ET
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):396-400. PubMed ID: 10803894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis.
    Rivasseau C; Seemann M; Boisson AM; Streb P; Gout E; Douce R; Rohmer M; Bligny R
    Plant Cell Environ; 2009 Jan; 32(1):82-92. PubMed ID: 19021881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of an intermediate of the methylerythritol phosphate pathway, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate, as the prenyl donor substrate for various prenyltransferases.
    Hayashi Y; Ito T; Yoshimura T; Hemmi H
    Biosci Biotechnol Biochem; 2018 Jun; 82(6):993-1002. PubMed ID: 29191109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux ratio analysis by parallel
    Orsi E; Beekwilder J; Peek S; Eggink G; Kengen SWM; Weusthuis RA
    Metab Eng; 2020 Jan; 57():228-238. PubMed ID: 31843486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High isoprenoid flux Escherichia coli as a host for carotenoids production.
    Suh W
    Methods Mol Biol; 2012; 834():49-62. PubMed ID: 22144352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The methylerythritol phosphate pathway as an oxidative stress sense and response system.
    Perez-Gil J; Behrendorff J; Douw A; Vickers CE
    Nat Commun; 2024 Jun; 15(1):5303. PubMed ID: 38906898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fldA is an essential gene required in the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis.
    Puan KJ; Wang H; Dairi T; Kuzuyama T; Morita CT
    FEBS Lett; 2005 Jul; 579(17):3802-6. PubMed ID: 15978585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving lycopene production in Escherichia coli by engineering metabolic control.
    Farmer WR; Liao JC
    Nat Biotechnol; 2000 May; 18(5):533-7. PubMed ID: 10802621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase.
    Zhou Y; Nambou K; Wei L; Cao J; Imanaka T; Hua Q
    Biotechnol Lett; 2013 Dec; 35(12):2137-45. PubMed ID: 24062132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production strategies and applications of lycopene and other terpenoids.
    Ma T; Deng Z; Liu T
    World J Microbiol Biotechnol; 2016 Jan; 32(1):15. PubMed ID: 26715120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of endogenous carotenoids and defective RpoS sigma factor on spontaneous mutation under starvation conditions in Escherichia coli: evidence for the possible involvement of singlet oxygen.
    Bridges BA; Timms A
    Mutat Res; 1998 Jul; 403(1-2):21-8. PubMed ID: 9726002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.