BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26610928)

  • 1. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.
    Li X; Guo B; Xiao Y; Yuan T; Fan Y; Zhang X
    J Mater Sci Mater Med; 2016 Jan; 27(1):5. PubMed ID: 26610928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites.
    Zhang F; Chang J; Lu J; Lin K; Ning C
    Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
    Nilen RW; Richter PW
    J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers: in vitro and in vivo evaluation.
    Fu YC; Chen CH; Wang CZ; Wang YH; Chang JK; Wang GJ; Ho ML; Wang CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():64-76. PubMed ID: 23880039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity.
    Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G
    Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics.
    Kinnari TJ; Esteban J; Martin-de-Hijas NZ; Sánchez-Muñoz O; Sánchez-Salcedo S; Colilla M; Vallet-Regí M; Gomez-Barrena E
    J Med Microbiol; 2009 Jan; 58(Pt 1):132-137. PubMed ID: 19074665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between bioceramics sintering and micro-particles-induced cellular damages.
    Lu J; Blary MC; Vavasseur S; Descamps M; Anselme K; Hardouin P
    J Mater Sci Mater Med; 2004 Apr; 15(4):361-5. PubMed ID: 15332600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical transformation of some biologically relevant calcium phosphates in aqueous media during a steam sterilization.
    Dorozhkin SV; Schmitt M; Bouler JM; Daculsi G
    J Mater Sci Mater Med; 2000 Dec; 11(12):779-86. PubMed ID: 15348060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure.
    Li B; Chen X; Guo B; Wang X; Fan H; Zhang X
    Acta Biomater; 2009 Jan; 5(1):134-43. PubMed ID: 18799376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of biphasic calcium phosphate ceramics of desired composition.
    Zyman ZZ; Tkachenko MV; Polevodin DV
    J Mater Sci Mater Med; 2008 Aug; 19(8):2819-25. PubMed ID: 18322781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics.
    Gomes S; Kaur A; Grenèche JM; Nedelec JM; Renaudin G
    Acta Biomater; 2017 Mar; 50():78-88. PubMed ID: 27965170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.