BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26610994)

  • 1. Risk Functions of Dolphins and Sea Lions Exposed to Sonar Signals.
    Houser DS; Martin SW; Finneran JJ
    Adv Exp Med Biol; 2016; 875():473-8. PubMed ID: 26610994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.
    Houser DS; Martin SW; Finneran JJ
    Mar Environ Res; 2013 Dec; 92():268-78. PubMed ID: 24183102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracic auscultation in captive bottlenose dolphins (Tursiops truncatus), California sea lions (Zalophus californianus), and South African fur seals (Arctocephalus pusillus) with an electronic stethoscope.
    Scharpegge J; Hartmann MG; Eulenberger K
    J Zoo Wildl Med; 2012 Jun; 43(2):265-74. PubMed ID: 22779229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equal latency contours for bottlenose dolphins (Tursiops truncatus) and California sea lions (Zalophus californianus).
    Mulsow J; Schlundt CE; Brandt L; Finneran JJ
    J Acoust Soc Am; 2015 Nov; 138(5):2678-91. PubMed ID: 26627745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled exposure study of dolphins and sea lions to midfrequency sonarlike signals.
    Houser D; Yeates L; Crocker D; Martin SW; Finneran JJ
    Adv Exp Med Biol; 2012; 730():269-72. PubMed ID: 22278496
    [No Abstract]   [Full Text] [Related]  

  • 6. Dolphin and sea lion auditory evoked potentials in response to single and multiple swept amplitude tones.
    Finneran JJ; Mulsow J; Schlundt CE; Houser DS
    J Acoust Soc Am; 2011 Aug; 130(2):1038-48. PubMed ID: 21877816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dolphins simplify their vocal calls in response to increased ambient noise.
    Fouda L; Wingfield JE; Fandel AD; Garrod A; Hodge KB; Rice AN; Bailey H
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30355679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocrine response to simulated U.S. Navy mid-frequency sonar exposures in the bottlenose dolphin (Tursiops truncatus).
    Houser DS; Martin S; Crocker DE; Finneran JJ
    J Acoust Soc Am; 2020 Mar; 147(3):1681. PubMed ID: 32237823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals.
    Imaizumi T; Furusawa M; Akamatsu T; Nishimori Y
    J Acoust Soc Am; 2008 Dec; 124(6):3440-9. PubMed ID: 19206773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals.
    Bailey H; Senior B; Simmons D; Rusin J; Picken G; Thompson PM
    Mar Pollut Bull; 2010 Jun; 60(6):888-97. PubMed ID: 20152995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing effects of an acoustic marine geophysical survey on the locomotive behavior of bottlenose dolphins, Tursiops truncatus.
    van der Woude SE
    Adv Exp Med Biol; 2012; 730():339-40. PubMed ID: 22278513
    [No Abstract]   [Full Text] [Related]  

  • 12. Anthropogenic noise impairs cooperation in bottlenose dolphins.
    Sørensen PM; Haddock A; Guarino E; Jaakkola K; McMullen C; Jensen FH; Tyack PL; King SL
    Curr Biol; 2023 Feb; 33(4):749-754.e4. PubMed ID: 36638798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonar-induced temporary hearing loss in dolphins.
    Mooney TA; Nachtigall PE; Vlachos S
    Biol Lett; 2009 Aug; 5(4):565-7. PubMed ID: 19364712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Output compensation of auditory brainstem responses in dolphins and sea lions.
    Finneran JJ; Mulsow J; Strahan MG; Houser DS; Burkard RF
    J Acoust Soc Am; 2022 May; 151(5):3070. PubMed ID: 35649923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whistle source levels of free-ranging bottlenose dolphins and Atlantic spotted dolphins in the Gulf of Mexico.
    Frankel AS; Zeddies D; Simard P; Mann D
    J Acoust Soc Am; 2014 Mar; 135(3):1624-31. PubMed ID: 24606297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dolphin changes in whistle structure with watercraft activity depends on their behavioral state.
    May-Collado LJ; Quiñones-Lebrón SG
    J Acoust Soc Am; 2014 Apr; 135(4):EL193-8. PubMed ID: 25236153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic detection probability of bottlenose dolphins, Tursiops truncatus, with static acoustic dataloggers in Cardigan Bay, Wales.
    Nuuttila HK; Thomas L; Hiddink JG; Meier R; Turner JR; Bennell JD; Tregenza NJ; Evans PG
    J Acoust Soc Am; 2013 Sep; 134(3):2596-609. PubMed ID: 23968057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of multiple impulses from a seismic air gun on bottlenose dolphin hearing and behavior.
    Finneran JJ; Schlundt CE; Branstetter BK; Trickey JS; Bowman V; Jenkins K
    J Acoust Soc Am; 2015 Apr; 137(4):1634-46. PubMed ID: 25920816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottlenose dolphin (Tursiops truncatus) discrimination of harmonic stimuli with range-dependent signal degradation.
    Mulsow J; Finneran JJ; Schlundt CE; Jones R
    J Acoust Soc Am; 2018 Jun; 143(6):3434. PubMed ID: 29960462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring ship noise to assess the impact of coastal developments on marine mammals.
    Merchant ND; Pirotta E; Barton TR; Thompson PM
    Mar Pollut Bull; 2014 Jan; 78(1-2):85-95. PubMed ID: 24279956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.