These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26611073)

  • 1. Vessel Noise Promotes Hull Fouling.
    Stanley JA; Wilkens S; McDonald JI; Jeffs AG
    Adv Exp Med Biol; 2016; 875():1097-104. PubMed ID: 26611073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fouling in your own nest: vessel noise increases biofouling.
    Stanley JA; Wilkens SL; Jeffs AG
    Biofouling; 2014; 30(7):837-44. PubMed ID: 25115518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vessel generator noise as a settlement cue for marine biofouling species.
    McDonald JI; Wilkens SL; Stanley JA; Jeffs AG
    Biofouling; 2014; 30(6):741-9. PubMed ID: 24866988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of containerships as transfer mechanisms of marine biofouling species.
    Davidson IC; Brown CW; Sytsma MD; Ruiz GM
    Biofouling; 2009 Oct; 25(7):645-55. PubMed ID: 20183123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of settlement in mussel (Perna canaliculus) larvae by vessel noise.
    Wilkens SL; Stanley JA; Jeffs AG
    Biofouling; 2012; 28(1):65-72. PubMed ID: 22235850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of vessel speed on the survivorship of biofouling organisms at different hull locations.
    Coutts AD; Piola RF; Taylor MD; Hewitt CL; Gardner JP
    Biofouling; 2010 Jul; 26(5):539-53. PubMed ID: 20526914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of mechanical grooming at various frequencies on a large scale test panel coated with a fouling-release coating.
    Hearin J; Hunsucker KZ; Swain G; Gardner H; Stephens A; Lieberman K
    Biofouling; 2016; 32(5):561-9. PubMed ID: 27051969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diatom community structure on in-service cruise ship hulls.
    Hunsucker KZ; Koka A; Lund G; Swain G
    Biofouling; 2014 Oct; 30(9):1133-40. PubMed ID: 25377486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures.
    Revilla-Castellanos VJ; Guerrero A; Gomez-Gil B; Navarro-Barrón E; Lizárraga-Partida ML
    Biofouling; 2015; 31(3):275-82. PubMed ID: 25921866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of antifouling practices on marine invasions.
    Piola RF; Dafforn KA; Johnston EL
    Biofouling; 2009 Oct; 25(7):633-44. PubMed ID: 20183122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary assessment of biofouling and non-indigenous marine species associated with commercial slow-moving vessels arriving in New Zealand.
    Hopkins GA; Forrest BM
    Biofouling; 2010 Jul; 26(5):613-21. PubMed ID: 20603727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vessel voyage speed on survival of biofouling organisms: implications for translocation of non-indigenous marine species.
    Coutts AD; Piola RF; Hewitt CL; Connell SD; Gardner JP
    Biofouling; 2010 Jan; 26(1):1-13. PubMed ID: 20390551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodine-infused aeration for hull fouling prevention: a vessel-scale study.
    Dickenson NC; Krumholz JS; Hunsucker KZ; Radicone M
    Biofouling; 2017 Nov; 33(10):955-969. PubMed ID: 29148284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A binational, supply-side evaluation for managing water quality and invasive fouling species on California's coastal boats.
    Johnson LT; Fernandez LM
    J Environ Manage; 2011 Dec; 92(12):3071-81. PubMed ID: 21864973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barnacles and biofouling.
    Holm ER
    Integr Comp Biol; 2012 Sep; 52(3):348-55. PubMed ID: 22508866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ship Hull-Fouling Diatoms on Korean Research Vessels Revealed by Morphological and Molecular Methods, and Their Environmental Implications.
    Park J; Kim T; Muhammad BL; Ki JS
    J Microbiol; 2023 Jun; 61(6):615-626. PubMed ID: 37227623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the port to port risk of vessel movements vectoring non-indigenous marine species within and across domestic Australian borders.
    Campbell ML; Hewitt CL
    Biofouling; 2011 Jul; 27(6):631-44. PubMed ID: 21722002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of copper on multiple successional stages of a marine fouling assemblage.
    McElroy DJ; Hochuli DF; Doblin MA; Murphy RJ; Blackburn RJ; Coleman RA
    Biofouling; 2017 Nov; 33(10):904-916. PubMed ID: 29083229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: A high-throughput sequencing analysis.
    von Ammon U; Wood SA; Laroche O; Zaiko A; Tait L; Lavery S; Inglis G; Pochon X
    Mar Environ Res; 2018 Feb; 133():57-66. PubMed ID: 29229186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosecurity risks associated with in-water and shore-based marine vessel hull cleaning operations.
    Woods CM; Floerl O; Jones L
    Mar Pollut Bull; 2012 Jul; 64(7):1392-401. PubMed ID: 22607846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.