BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26611372)

  • 1. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.
    Karpe AV; Beale DJ; Godhani NB; Morrison PD; Harding IH; Palombo EA
    J Agric Food Chem; 2015 Dec; 63(49):10696-704. PubMed ID: 26611372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Untargeted metabolic profiling of Vitis vinifera during fungal degradation.
    Karpe AV; Beale DJ; Morrison PD; Harding IH; Palombo EA
    FEMS Microbiol Lett; 2015 May; 362(10):. PubMed ID: 25868913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.
    Karpe AV; Dhamale VV; Morrison PD; Beale DJ; Harding IH; Palombo EA
    Fungal Genet Biol; 2017 May; 102():22-30. PubMed ID: 27599392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid.
    Kumari A; Ahmad R; Negi S; Khare SK
    Bioresour Technol; 2017 Feb; 226():31-38. PubMed ID: 27978437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untargeted GC-MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of Streptoccoccus thermophilus Broth.
    Khakimov B; Christiansen LD; Heins AL; Sørensen KM; Schöller C; Clausen A; Skov T; Gernaey KV; Engelsen SB
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 29034577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the intracellular metabolome of yeast biocapsules - Spherical structures of yeast attached to fungal pellets.
    Ogawa M; García-Martínez T; Bisson L; Mauricio JC; Moreno J; Moreno-García J
    N Biotechnol; 2020 Sep; 58():55-60. PubMed ID: 32562862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring alcoholic fermentation: an untargeted approach.
    Ferreira AC; Monforte AR; Teixeira CS; Martins R; Fairbairn S; Bauer FF
    J Agric Food Chem; 2014 Jul; 62(28):6784-93. PubMed ID: 24976138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.
    Geng J; Yuan J
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):665-74. PubMed ID: 19543751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic model-based preparation of uniformly-
    Wang G; Chu J; Zhuang Y; van Gulik W; Noorman H
    J Biotechnol; 2019 Jun; 299():21-31. PubMed ID: 31047964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum.
    Nasution U; van Gulik WM; Kleijn RJ; van Winden WA; Proell A; Heijnen JJ
    Biotechnol Bioeng; 2006 May; 94(1):159-66. PubMed ID: 16508996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal 13C-labeling: a method for investigating the catabolism of cosubstrates.
    Christensen B; Nielsen J
    Biotechnol Prog; 2002; 18(2):163-6. PubMed ID: 11934281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitinase but N-acetyl-β-D-glucosaminidase production correlates to the biomass decline in Penicillium and Aspergillus species.
    Pusztahelyi T; Pócsi I
    Acta Microbiol Immunol Hung; 2014 Jun; 61(2):131-43. PubMed ID: 24939682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations.
    Cao YX; Qiao B; Lu H; Chen Y; Yuan YJ
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1193-202. PubMed ID: 20941491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GC-TOF-MS- and CE-TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways.
    Kim J; Choi JN; John KM; Kusano M; Oikawa A; Saito K; Lee CH
    J Agric Food Chem; 2012 Sep; 60(38):9746-53. PubMed ID: 22913417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Penicillium chrysogenum and Debaryomyces hansenii on the volatile compounds during controlled ripening of pork loins.
    Martín A; Córdoba JJ; Benito MJ; Aranda E; Asensio MA
    Int J Food Microbiol; 2003 Aug; 84(3):327-38. PubMed ID: 12810295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of α-amylase by Penicillium chrysogenum in liquid culture by modifying the process parameters.
    Dar GH; Kamili AN; Nazir R; Bandh SA; Jan TR; Chishti MZ
    Microb Pathog; 2015 Nov; 88():10-5. PubMed ID: 26220910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation.
    Thykaer J; Christensen B; Nielsen J
    Metab Eng; 2002 Apr; 4(2):151-8. PubMed ID: 12009794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved sample preparation for intact cell mass spectrometry (biotyping) of mycelium samples taken from a batch fermentation process of Penicillium chrysogenum.
    Helmel M; Marchetti-Deschmann M; Allmaier G
    Rapid Commun Mass Spectrom; 2014 Apr; 28(8):957-64. PubMed ID: 24623701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting.
    Castillo JM; Nogales R; Romero E
    J Hazard Mater; 2014 Feb; 267():119-27. PubMed ID: 24440653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures of Penicillium chrysogenum.
    White S; Berry DR; McNeil B
    J Biotechnol; 1999 Oct; 75(2-3):173-85. PubMed ID: 10553656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.