These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 26611649)
1. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study. Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649 [TBL] [Abstract][Full Text] [Related]
2. A novel in vitro sensing configuration for retinal physiology analysis of a sub-retinal prosthesis. Koo KI; Lee S; Yee JH; Ryu SB; Kim KH; Goo YS; Cho DI Sensors (Basel); 2012; 12(3):3131-44. PubMed ID: 22736997 [TBL] [Abstract][Full Text] [Related]
3. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks. Obien MEJ; Frey U Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933 [TBL] [Abstract][Full Text] [Related]
4. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
5. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection. Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921 [TBL] [Abstract][Full Text] [Related]
6. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654 [TBL] [Abstract][Full Text] [Related]
7. A 3D flexible microelectrode array for subretinal stimulation. Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording. Mathieson K; Moodie AR; Grant E; Morrison JD J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248 [TBL] [Abstract][Full Text] [Related]
9. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants. Xu Y; Pang S IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653 [TBL] [Abstract][Full Text] [Related]
10. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation. Asghar SA; Mahadevappa M IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869 [TBL] [Abstract][Full Text] [Related]
11. Electrical stimulation of different retinal components and the effect of asymmetric pulses. Raz-Prag D; Beit-Yaakov G; Hanein Y J Neurosci Methods; 2017 Nov; 291():20-27. PubMed ID: 28782627 [TBL] [Abstract][Full Text] [Related]
12. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays. Panuccio G; Colombi I; Chiappalone M J Vis Exp; 2018 May; (135):. PubMed ID: 29863681 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the Functional Retinal Output Using Microelectrode Arrays. Zeck G Methods Mol Biol; 2018; 1695():81-88. PubMed ID: 29190020 [TBL] [Abstract][Full Text] [Related]
14. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology]. Feng G; Sui X; Wang Y; Li G; Chai X Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208 [TBL] [Abstract][Full Text] [Related]
15. A Computational Study of Graphene as a Prospective Material for Microelectrodes in Retinal Prosthesis and Electric Crosstalk Analysis. Asghar SA; Pal P; Nazeer K; Mahadevappa M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2291-2294. PubMed ID: 33018465 [TBL] [Abstract][Full Text] [Related]
16. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study. Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093 [TBL] [Abstract][Full Text] [Related]
17. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses. Han S; Kim C; Kim K; Lee S Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814 [TBL] [Abstract][Full Text] [Related]
18. A system for MEA-based multisite stimulation. Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038 [TBL] [Abstract][Full Text] [Related]
19. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362 [TBL] [Abstract][Full Text] [Related]
20. Improvements for recording retinal function with Microelectrode Arrays. Rathbun DL; Jalligampala A; Zrenner E; Hosseinzadeh Z MethodsX; 2024 Jun; 12():102543. PubMed ID: 38313698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]