BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 26612103)

  • 21. A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine.
    Gui S; Gathiaka S; Li J; Qu J; Acevedo O; Hevel JM
    J Biol Chem; 2014 Mar; 289(13):9320-7. PubMed ID: 24478314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Study of
    Lorenzon L; Quilles JC; Campagnaro GD; Azevedo Orsine L; Almeida L; Veras F; Miserani Magalhães RD; Alcoforado Diniz J; Rodrigues Ferreira T; Kaysel Cruz A
    ACS Infect Dis; 2022 Mar; 8(3):516-532. PubMed ID: 35226477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases.
    Jain K; Jin CY; Clarke SG
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10101-10106. PubMed ID: 28874563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro methylation assay to study protein arginine methylation.
    Bikkavilli RK; Avasarala S; Van Scoyk M; Karuppusamy Rathinam MK; Tauler J; Borowicz S; Winn RA
    J Vis Exp; 2014 Oct; (92):e51997. PubMed ID: 25350748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro and in vivo analysis of the major type I protein arginine methyltransferase from Trypanosoma brucei.
    Pelletier M; Pasternack DA; Read LK
    Mol Biochem Parasitol; 2005 Dec; 144(2):206-17. PubMed ID: 16198009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei.
    Pasternack DA; Sayegh J; Clarke S; Read LK
    Eukaryot Cell; 2007 Sep; 6(9):1665-81. PubMed ID: 17601874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arginine Methylation: The Coming of Age.
    Blanc RS; Richard S
    Mol Cell; 2017 Jan; 65(1):8-24. PubMed ID: 28061334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effectors and effects of arginine methylation.
    Wang Y; Bedford MT
    Biochem Soc Trans; 2023 Apr; 51(2):725-734. PubMed ID: 37013969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis.
    Osborne TC; Obianyo O; Zhang X; Cheng X; Thompson PR
    Biochemistry; 2007 Nov; 46(46):13370-81. PubMed ID: 17960915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative Methods to Study Protein Arginine Methyltransferase 1-9 Activity in Cells.
    Szewczyk MM; Vu V; Barsyte-Lovejoy D
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues.
    Guo H; Wang R; Zheng W; Chen Y; Blum G; Deng H; Luo M
    ACS Chem Biol; 2014 Feb; 9(2):476-84. PubMed ID: 24320160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases - how and why.
    Wahle E; Moritz B
    Biol Chem; 2013 Aug; 394(8):1029-43. PubMed ID: 23412876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.
    Kim JD; Kako K; Kakiuchi M; Park GG; Fukamizu A
    Int J Mol Med; 2008 Sep; 22(3):309-15. PubMed ID: 18698489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3.
    Zhang X; Zhou L; Cheng X
    EMBO J; 2000 Jul; 19(14):3509-19. PubMed ID: 10899106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1.
    Dowden J; Pike RA; Parry RV; Hong W; Muhsen UA; Ward SG
    Org Biomol Chem; 2011 Oct; 9(22):7814-21. PubMed ID: 21952734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites.
    van Haren M; van Ufford LQ; Moret EE; Martin NI
    Org Biomol Chem; 2015 Jan; 13(2):549-60. PubMed ID: 25380215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.
    Debler EW; Jain K; Warmack RA; Feng Y; Clarke SG; Blobel G; Stavropoulos P
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2068-73. PubMed ID: 26858449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.
    Chu Y; Guo H
    Interdiscip Sci; 2015 Sep; 7(3):309-18. PubMed ID: 26267708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs.
    Gayatri S; Cowles MW; Vemulapalli V; Cheng D; Sun ZW; Bedford MT
    Sci Rep; 2016 Jun; 6():28718. PubMed ID: 27338245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein arginine methyltransferases (PRMTs): role in chromatin organization.
    Jahan S; Davie JR
    Adv Biol Regul; 2015 Jan; 57():173-84. PubMed ID: 25263650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.