BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26612355)

  • 1. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.
    Kiwamoto R; Ploeg D; Rietjens IM; Punt A
    Toxicol In Vitro; 2016 Mar; 31():114-25. PubMed ID: 26612355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in rat.
    Kiwamoto R; Rietjens IM; Punt A
    Chem Res Toxicol; 2012 Dec; 25(12):2630-41. PubMed ID: 22978292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Jan; 282(1):108-17. PubMed ID: 25448044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Arch Toxicol; 2013 Sep; 87(9):1725-37. PubMed ID: 23864024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and alpha,beta-unsaturated aldehydes: correct prediction of genotoxic activity through structure-activity relationship models.
    Benigni R; Conti L; Crebelli R; Rodomonte A; Vari' MR
    Environ Mol Mutagen; 2005 Dec; 46(4):268-80. PubMed ID: 15991240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FEMA GRAS assessment of alpha,beta-unsaturated aldehydes and related substances used as flavor ingredients.
    Adams TB; Gavin CL; Taylor SV; Waddell WJ; Cohen SM; Feron VJ; Goodman J; Rietjens IM; Marnett LJ; Portoghese PS; Smith RL
    Food Chem Toxicol; 2008 Sep; 46(9):2935-67. PubMed ID: 18644420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer risk assessment for crotonaldehyde and 2-hexenal: an approach.
    Eder E; Schuler D; Budiawan
    IARC Sci Publ; 1999; (150):219-32. PubMed ID: 10626223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Metabolism of α,β-Unsaturated Carbonyl Compounds, Acrolein, Crotonaldehyde and Methyl Vinyl Ketone, Active Toxicants in Cigarette Smoke: Participation of Glutathione Conjugation Ability and Aldehyde-Ketone Sensitive Reductase Activity.
    Horiyama S; Hatai M; Takahashi Y; Date S; Masujima T; Honda C; Ichikawa A; Yoshikawa N; Nakamura K; Kunitomo M; Takayama M
    Chem Pharm Bull (Tokyo); 2016; 64(6):585-93. PubMed ID: 27250793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase.
    Hartley DP; Ruth JA; Petersen DR
    Arch Biochem Biophys; 1995 Jan; 316(1):197-205. PubMed ID: 7840616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotoxicity of aldehyde mixtures: profile of exocyclic DNA-adducts as a biomarker of exposure to tobacco smoke.
    Alamil H; Galanti L; Heutte N; Van Der Schueren M; Dagher Z; Lechevrel M
    Toxicol Lett; 2020 Oct; 331():57-64. PubMed ID: 32442718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (E)-2-hexenal-induced DNA damage and formation of cyclic 1,N2-(1,3-propano)-2'-deoxyguanosine adducts in mammalian cells.
    Gölzer P; Janzowski C; Pool-Zobel BL; Eisenbrand G
    Chem Res Toxicol; 1996; 9(7):1207-13. PubMed ID: 8902278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats.
    Suzuki Y; Umemura T; Hibi D; Inoue T; Jin M; Ishii Y; Sakai H; Nohmi T; Yanai T; Nishikawa A; Ogawa K
    Arch Toxicol; 2012 Oct; 86(10):1593-601. PubMed ID: 22576464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mycotoxin patulin reacts with DNA bases with and without previous conjugation to GSH: implication for related α,β-unsaturated carbonyl compounds?
    Pfenning C; Esch HL; Fliege R; Lehmann L
    Arch Toxicol; 2016 Feb; 90(2):433-48. PubMed ID: 25537190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione depletion enhances the formation of endogenous cyclic DNA adducts derived from t-4-hydroxy-2-nonenal in rat liver.
    Chung FL; Komninou D; Zhang L; Nath R; Pan J; Amin S; Richie J
    Chem Res Toxicol; 2005 Jan; 18(1):24-7. PubMed ID: 15651845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer risk assessment for the environmental mutagen and carcinogen crotonaldehyde on the basis of TD(50) and comparison with 1,N(2)-propanodeoxyguanosine adduct levels.
    Eder E; Budiawan
    Cancer Epidemiol Biomarkers Prev; 2001 Aug; 10(8):883-8. PubMed ID: 11489755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NTP toxicology and carcinogensis Studies of 2,4-hexadienal (89% trans,trans isomer, CAS No. 142-83-6; 11% cis,trans isomer) (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2003 Oct; (509):1-290. PubMed ID: 14999299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to cancer risk assessment for the food constituent 2-hexenal on the basis of 1,N2-propanodeoxyguanosine adducts of 2-hexenal in vivo.
    Eder E; Schuler D
    Arch Toxicol; 2000 Dec; 74(10):642-8. PubMed ID: 11201673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.