BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 26612606)

  • 41. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel.
    Wasmuth EV; Lima CD
    Mol Cell; 2012 Oct; 48(1):133-44. PubMed ID: 22902556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rrp6, Rrp47 and cofactors of the nuclear exosome.
    Butler JS; Mitchell P
    Adv Exp Med Biol; 2010; 702():91-104. PubMed ID: 21618877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elimination of 01/A'-A0 pre-rRNA processing by-product in human cells involves cooperative action of two nuclear exosome-associated nucleases: RRP6 and DIS3.
    Kobyłecki K; Drążkowska K; Kuliński TM; Dziembowski A; Tomecki R
    RNA; 2018 Dec; 24(12):1677-1692. PubMed ID: 30266864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex.
    Weick EM; Puno MR; Januszyk K; Zinder JC; DiMattia MA; Lima CD
    Cell; 2018 Jun; 173(7):1663-1677.e21. PubMed ID: 29906447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and In Vitro Analysis of the Exosome Cofactors Nrd1-Nab3 and Trf4-Air2.
    Porrua O
    Methods Mol Biol; 2020; 2062():277-289. PubMed ID: 31768982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reconstitution of the Human Nuclear RNA Exosome.
    Januszyk K; Weick EM; Lima CD
    Methods Mol Biol; 2020; 2062():467-489. PubMed ID: 31768991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3.
    Zinder JC; Wasmuth EV; Lima CD
    Mol Cell; 2016 Nov; 64(4):734-745. PubMed ID: 27818140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47.
    Feigenbutz M; Jones R; Besong TM; Harding SE; Mitchell P
    J Biol Chem; 2013 May; 288(22):15959-70. PubMed ID: 23580640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae.
    Davis CA; Ares M
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3262-7. PubMed ID: 16484372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer.
    Stuparević I; Novačić A; Rahmouni AR; Fernandez A; Lamb N; Primig M
    Biol Rev Camb Philos Soc; 2021 Aug; 96(4):1092-1113. PubMed ID: 33599082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome.
    Schneider C; Leung E; Brown J; Tollervey D
    Nucleic Acids Res; 2009 Mar; 37(4):1127-40. PubMed ID: 19129231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination.
    Marin-Vicente C; Domingo-Prim J; Eberle AB; Visa N
    J Cell Sci; 2015 Mar; 128(6):1097-107. PubMed ID: 25632158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Yeast RNA exosome activity is necessary for maintaining cell wall stability through proper protein glycosylation.
    Novačić A; Beauvais V; Oskomić M; Štrbac L; Dantec AL; Rahmouni AR; Stuparević I
    Mol Biol Cell; 2021 Mar; 32(5):363-375. PubMed ID: 33439673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The subcellular localisation of trypanosome RRP6 and its association with the exosome.
    Haile S; Cristodero M; Clayton C; Estévez AM
    Mol Biochem Parasitol; 2007 Jan; 151(1):52-8. PubMed ID: 17118470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perturbation of mRNP biogenesis reveals a dynamic landscape of the Rrp6-dependent surveillance machinery trafficking along the yeast genome.
    Moreau K; Le Dantec A; Mosrin-Huaman C; Bigot Y; Piégu B; Rahmouni AR
    RNA Biol; 2019 Jul; 16(7):879-889. PubMed ID: 31007122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A single subunit, Dis3, is essentially responsible for yeast exosome core activity.
    Dziembowski A; Lorentzen E; Conti E; Séraphin B
    Nat Struct Mol Biol; 2007 Jan; 14(1):15-22. PubMed ID: 17173052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p.
    Callahan KP; Butler JS
    Nucleic Acids Res; 2008 Dec; 36(21):6645-55. PubMed ID: 18940861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The eukaryotic RNA exosome.
    Januszyk K; Lima CD
    Curr Opin Struct Biol; 2014 Feb; 24():132-40. PubMed ID: 24525139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs.
    Fang F; Hoskins J; Butler JS
    Mol Cell Biol; 2004 Dec; 24(24):10766-76. PubMed ID: 15572680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana.
    Sikorski PJ; Zuber H; Philippe L; Sement FM; Canaday J; Kufel J; Gagliardi D; Lange H
    Plant J; 2015 Sep; 83(6):991-1004. PubMed ID: 26216451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.