These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26612787)
1. Exploring the relationship between the causal-inference and meta-analytic paradigms for the evaluation of surrogate endpoints. Van der Elst W; Molenberghs G; Alonso A Stat Med; 2016 Apr; 35(8):1281-98. PubMed ID: 26612787 [TBL] [Abstract][Full Text] [Related]
2. On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints. Alonso A; Van der Elst W; Molenberghs G; Buyse M; Burzykowski T Biometrics; 2015 Mar; 71(1):15-24. PubMed ID: 25274284 [TBL] [Abstract][Full Text] [Related]
3. A reflection on the causal interpretation of individual-level surrogacy. Alonso A; Van Der Elst W; Molenberghs G; Florez AJ J Biopharm Stat; 2019; 29(3):529-540. PubMed ID: 30773114 [TBL] [Abstract][Full Text] [Related]
4. An information-theoretic approach for the evaluation of surrogate endpoints based on causal inference. Alonso A; Van der Elst W; Molenberghs G; Buyse M; Burzykowski T Biometrics; 2016 Sep; 72(3):669-77. PubMed ID: 26864244 [TBL] [Abstract][Full Text] [Related]
5. Assessing a surrogate predictive value: a causal inference approach. Alonso A; Van der Elst W; Meyvisch P Stat Med; 2017 Mar; 36(7):1083-1098. PubMed ID: 27966231 [TBL] [Abstract][Full Text] [Related]
6. Links between analysis of surrogate endpoints and endogeneity. Ghosh D; Elliott MR; Taylor JM Stat Med; 2010 Dec; 29(28):2869-79. PubMed ID: 20803482 [TBL] [Abstract][Full Text] [Related]
7. A maximum entropy approach for the evaluation of surrogate endpoints based on causal inference. Alonso A; Van der Elst W; Molenberghs G Stat Med; 2018 Dec; 37(29):4525-4538. PubMed ID: 30141219 [TBL] [Abstract][Full Text] [Related]
8. Differences in surrogate threshold effect estimates between original and simplified correlation-based validation approaches. Schürmann C; Sieben W Stat Med; 2016 Mar; 35(7):1049-62. PubMed ID: 26522510 [TBL] [Abstract][Full Text] [Related]
9. On the relationship between association and surrogacy when both the surrogate and true endpoint are binary outcomes. Meyvisch P; Alonso A; Van der Elst W; Molenberghs G Stat Med; 2020 Nov; 39(26):3867-3878. PubMed ID: 32875590 [TBL] [Abstract][Full Text] [Related]
10. Prentice's approach and the meta-analytic paradigm: a reflection on the role of statistics in the evaluation of surrogate endpoints. Alonso A; Molenberghs G; Burzykowski T; Renard D; Geys H; Shkedy Z; Tibaldi F; Abrahantes JC; Buyse M Biometrics; 2004 Sep; 60(3):724-8. PubMed ID: 15339295 [TBL] [Abstract][Full Text] [Related]
11. A reflection on the possibility of finding a good surrogate. Alonso A; Meyvisch P; Van der Elst W; Molenberghs G; Verbeke G J Biopharm Stat; 2019; 29(3):468-477. PubMed ID: 30686082 [TBL] [Abstract][Full Text] [Related]
12. Validation of surrogate endpoints in cancer clinical trials via principal stratification with an application to a prostate cancer trial. Tanaka S; Matsuyama Y; Ohashi Y Stat Med; 2017 Aug; 36(19):2963-2977. PubMed ID: 28485043 [TBL] [Abstract][Full Text] [Related]
13. surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Rotolo F; Paoletti X; Michiels S Comput Methods Programs Biomed; 2018 Mar; 155():189-198. PubMed ID: 29512498 [TBL] [Abstract][Full Text] [Related]
14. A new proportion measure of the treatment effect captured by candidate surrogate endpoints. Kobayashi F; Kuroki M Stat Med; 2014 Aug; 33(19):3338-53. PubMed ID: 24782344 [TBL] [Abstract][Full Text] [Related]
15. How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials. Sofeu CL; Rondeau V PLoS One; 2020; 15(1):e0228098. PubMed ID: 31990928 [TBL] [Abstract][Full Text] [Related]
16. Information theory-based surrogate marker evaluation from several randomized clinical trials with binary endpoints, using SAS. Tilahun A; Pryseley A; Alonso A; Molenberghs G J Biopharm Stat; 2008; 18(2):326-41. PubMed ID: 18327724 [TBL] [Abstract][Full Text] [Related]
17. The individual-level surrogate threshold effect in a causal-inference setting with normally distributed endpoints. Van der Elst W; Abad AA; Coppenolle H; Meyvisch P; Molenberghs G Pharm Stat; 2021 Nov; 20(6):1216-1231. PubMed ID: 34018666 [TBL] [Abstract][Full Text] [Related]
18. Assessing the predictive value of a binary surrogate for a binary true endpoint based on the minimum probability of a prediction error. Meyvisch P; Alonso A; Van der Elst W; Molenberghs G Pharm Stat; 2019 May; 18(3):304-315. PubMed ID: 30575256 [TBL] [Abstract][Full Text] [Related]
19. A unified framework for the evaluation of surrogate endpoints in mental-health clinical trials. Molenberghs G; Burzykowski T; Alonso A; Assam P; Tilahun A; Buyse M Stat Methods Med Res; 2010 Jun; 19(3):205-36. PubMed ID: 19608602 [TBL] [Abstract][Full Text] [Related]
20. Alternative methods to evaluate trial level surrogacy. Abrahantes JC; Shkedy Z; Molenberghs G Clin Trials; 2008; 5(3):194-208. PubMed ID: 18559408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]