These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26612850)

  • 1. Drought avoidance and vulnerability in the Australian Araucariaceae.
    Zimmer HC; Brodribb TJ; Delzon S; Baker PJ
    Tree Physiol; 2016 Feb; 36(2):218-28. PubMed ID: 26612850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pushed to the limit: consequences of climate change for the Araucariaceae: a relictual rain forest family.
    Offord CA
    Ann Bot; 2011 Aug; 108(2):347-57. PubMed ID: 21727080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae).
    Peakall R; Ebert D; Scott LJ; Meagher PF; Offord CA
    Mol Ecol; 2003 Sep; 12(9):2331-43. PubMed ID: 12919472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates.
    Blackman CJ; Gleason SM; Chang Y; Cook AM; Laws C; Westoby M
    Ann Bot; 2014 Sep; 114(3):435-40. PubMed ID: 25006181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer.
    Chin AR; Sillett SC
    Am J Bot; 2016 May; 103(5):796-807. PubMed ID: 27208348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria).
    Brophy JJ; Goldsack RJ; Wu MZ; Fookes CJ; Forster PI
    Biochem Syst Ecol; 2000 Jul; 28(6):563-578. PubMed ID: 10793256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia.
    Cassana FF; Dillenburg LR
    Plant Biol (Stuttg); 2013 Jan; 15(1):75-83. PubMed ID: 22672733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited variation found among Norway spruce half-sib families in physiological response to drought and resistance to embolism.
    Chmura DJ; Guzicka M; McCulloh KA; Żytkowiak R
    Tree Physiol; 2016 Feb; 36(2):252-66. PubMed ID: 26786539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrospective analysis of wood anatomical traits and tree-ring isotopes suggests site-specific mechanisms triggering Araucaria araucana drought-induced dieback.
    Puchi PF; Camarero JJ; Battipaglia G; Carrer M
    Glob Chang Biol; 2021 Dec; 27(24):6394-6408. PubMed ID: 34514686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees.
    Yoshimura K; Saiki ST; Yazaki K; Ogasa MY; Shirai M; Nakano T; Yoshimura J; Ishida A
    Sci Rep; 2016 Apr; 6():24513. PubMed ID: 27079677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species.
    Kannenberg SA; Novick KA; Phillips RP
    New Phytol; 2019 Jun; 222(4):1862-1872. PubMed ID: 30664253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species assemblage patterns around a dominant emergent tree are associated with drought resistance.
    Wyse SV; Macinnis-Ng CM; Burns BR; Clearwater MJ; Schwendenmann L
    Tree Physiol; 2013 Dec; 33(12):1269-83. PubMed ID: 24299988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
    Trifilò P; Barbera PM; Raimondo F; Nardini A; Lo Gullo MA
    Tree Physiol; 2014 Feb; 34(2):109-22. PubMed ID: 24488800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.
    Arndt SK; Sanders GJ; Bristow M; Hutley LB; Beringer J; Livesley SJ
    Tree Physiol; 2015 Jul; 35(7):783-91. PubMed ID: 25934988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and physiological responses to successional water deficit and recovery in four warm-temperate woody species.
    Li Q; Wang N; Liu X; Liu S; Wang H; Zhang W; Wang R; Du N
    Physiol Plant; 2019 Dec; 167(4):645-660. PubMed ID: 30637759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.
    Yap JY; Rohner T; Greenfield A; Van Der Merwe M; McPherson H; Glenn W; Kornfeld G; Marendy E; Pan AY; Wilton A; Wilkins MR; Rossetto M; Delaney SK
    PLoS One; 2015; 10(6):e0128126. PubMed ID: 26061691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.
    Anderegg LD; HilleRisLambers J
    Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anatomical assessment of branch abscission and branch-base hydraulic architecture in the endangered Wollemia nobilis.
    Burrows GE; Meagher PF; Heady RD
    Ann Bot; 2007 Apr; 99(4):609-23. PubMed ID: 17272303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.