These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26612863)

  • 21. An analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators.
    Ling R; Firth AE
    J Gen Virol; 2017 Aug; 98(8):2100-2105. PubMed ID: 28786807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator.
    Lin YH; Chang KY
    Nucleic Acids Res; 2016 Oct; 44(18):9005-9015. PubMed ID: 27521370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
    Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N
    Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus.
    Gao F; Simon AE
    Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target.
    Kelly JA; Woodside MT; Dinman JD
    Virology; 2021 Feb; 554():75-82. PubMed ID: 33387787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure.
    Halma MTJ; Ritchie DB; Cappellano TR; Neupane K; Woodside MT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19500-19505. PubMed ID: 31409714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR screening reveals a dependency on ribosome recycling for efficient SARS-CoV-2 programmed ribosomal frameshifting and viral replication.
    Rehfeld F; Eitson JL; Ohlson MB; Chang TC; Schoggins JW; Mendell JT
    Cell Rep; 2023 Feb; 42(2):112076. PubMed ID: 36753415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics.
    Belew AT; Dinman JD
    Cell Cycle; 2015; 14(2):172-8. PubMed ID: 25584829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmed -2/-1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism.
    Li Y; Firth AE; Brierley I; Cai Y; Napthine S; Wang T; Yan X; Kuhn JH; Fang Y
    J Virol; 2019 Aug; 93(16):. PubMed ID: 31167906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
    Brierley I; Dos Ramos FJ
    Virus Res; 2006 Jul; 119(1):29-42. PubMed ID: 16310880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Inhibitors of -1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses.
    Munshi S; Neupane K; Ileperuma SM; Halma MTJ; Kelly JA; Halpern CF; Dinman JD; Loerch S; Woodside MT
    Viruses; 2022 Jan; 14(2):. PubMed ID: 35215770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting.
    Napthine S; Treffers EE; Bell S; Goodfellow I; Fang Y; Firth AE; Snijder EJ; Brierley I
    Nucleic Acids Res; 2016 Jul; 44(12):5491-503. PubMed ID: 27257056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-directed ribosomal frameshifting temporally regulates gene expression.
    Napthine S; Ling R; Finch LK; Jones JD; Bell S; Brierley I; Firth AE
    Nat Commun; 2017 Jun; 8():15582. PubMed ID: 28593994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus.
    Ishimaru D; Plant EP; Sims AC; Yount BL; Roth BM; Eldho NV; Pérez-Alvarado GC; Armbruster DW; Baric RS; Dinman JD; Taylor DR; Hennig M
    Nucleic Acids Res; 2013 Feb; 41(4):2594-608. PubMed ID: 23275571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods.
    Chang KC
    Comput Math Methods Med; 2012; 2012():569870. PubMed ID: 22545064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide CRISPR screens identify noncanonical translation factor eIF2A as an enhancer of SARS-CoV-2 programmed -1 ribosomal frameshifting.
    Wei LH; Sun Y; Guo JU
    Cell Rep; 2023 Aug; 42(8):112987. PubMed ID: 37581984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and implications of programmed translational frameshifting.
    Dinman JD
    Wiley Interdiscip Rev RNA; 2012; 3(5):661-73. PubMed ID: 22715123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
    Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN
    Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting.
    Chou MY; Chang KY
    Nucleic Acids Res; 2010 Mar; 38(5):1676-85. PubMed ID: 20007152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift.
    Léger M; Dulude D; Steinberg SV; Brakier-Gingras L
    Nucleic Acids Res; 2007; 35(16):5581-92. PubMed ID: 17704133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.