These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26612918)

  • 1. Calcium versus strontium handling by the heart muscle.
    Hendrych M; Olejnickova V; Novakova M
    Gen Physiol Biophys; 2016 Jan; 35(1):13-23. PubMed ID: 26612918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes.
    Hatano A; Okada J; Hisada T; Sugiura S
    J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs.
    Seo K; Inagaki M; Hidaka I; Fukano H; Sugimachi M; Hisada T; Nishimura S; Sugiura S
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):129-39. PubMed ID: 25084395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models of cardiac excitation-contraction coupling in ventricular myocytes.
    Williams GS; Smith GD; Sobie EA; Jafri MS
    Math Biosci; 2010 Jul; 226(1):1-15. PubMed ID: 20346962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback.
    ter Keurs HE
    Pflugers Arch; 2011 Jul; 462(1):165-75. PubMed ID: 21373861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-regulated transcriptional pathways in the normal and pathologic heart.
    Zarain-Herzberg A; Fragoso-Medina J; Estrada-Avilés R
    IUBMB Life; 2011 Oct; 63(10):847-55. PubMed ID: 21901815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium.
    Kemi OJ; Wisløff U
    Acta Physiol (Oxf); 2010 Aug; 199(4):425-39. PubMed ID: 20353489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Developmental changes of excitation-contraction coupling in the postnatal mammalian heart].
    Wang F; Cong XF; Chen X
    Sheng Li Ke Xue Jin Zhan; 2013 Jun; 44(3):227-32. PubMed ID: 24027833
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of age on cardiac excitation-contraction coupling.
    Fares E; Howlett SE
    Clin Exp Pharmacol Physiol; 2010 Jan; 37(1):1-7. PubMed ID: 19671063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cardiac excitation-contraction coupling mediated by Ca2+].
    Ji YH; Sun HY
    Shi Yan Sheng Wu Xue Bao; 2004 Feb; 37(1):78-83. PubMed ID: 15133904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies.
    Tuncay E; Bilginoglu A; Sozmen NN; Zeydanli EN; Ugur M; Vassort G; Turan B
    Cardiovasc Res; 2011 Feb; 89(3):634-42. PubMed ID: 21062918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of cardiac alternans in atrial cells: intracellular Ca2⁺ disturbances lead the way.
    Valdivia HH
    Circ Res; 2015 Feb; 116(5):778-80. PubMed ID: 25722439
    [No Abstract]   [Full Text] [Related]  

  • 15. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart.
    Huang Y; Hickey RP; Yeh JL; Liu D; Dadak A; Young LH; Johnson RS; Giordano FJ
    FASEB J; 2004 Jul; 18(10):1138-40. PubMed ID: 15132980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cardiac contraction cycle: is Ca2+ going local? Point.
    Fowler MR; Smith GL
    J Appl Physiol (1985); 2009 Dec; 107(6):1981-4. PubMed ID: 19952385
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling.
    Mayourian J; Ceholski DK; Gonzalez DM; Cashman TJ; Sahoo S; Hajjar RJ; Costa KD
    Circ Res; 2018 Jan; 122(1):167-183. PubMed ID: 29301848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
    Pfeiffer ER; Tangney JR; Omens JH; McCulloch AD
    J Biomech Eng; 2014 Feb; 136(2):021007. PubMed ID: 24337452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A significant role of sarcoplasmic reticulum in cardiac contraction of a basal vertebrate, the river lamprey (Lampetra fluviatilis).
    Vornanen M; Haverinen J
    Acta Physiol (Oxf); 2013 Feb; 207(2):269-79. PubMed ID: 22943571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.