These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 26613357)
21. Analysis of polybrominated diphenyl ethers and emerging halogenated and organophosphate flame retardants in human hair and nails. Liu LY; Salamova A; He K; Hites RA J Chromatogr A; 2015 Aug; 1406():251-7. PubMed ID: 26122855 [TBL] [Abstract][Full Text] [Related]
22. Preliminary study of long-range transport of halogenated flame retardants using Antarctic marine mammals. Aznar-Alemany Ò; Yang X; Alonso MB; Costa ES; Torres JPM; Malm O; Barceló D; Eljarrat E Sci Total Environ; 2019 Feb; 650(Pt 2):1889-1897. PubMed ID: 30286355 [TBL] [Abstract][Full Text] [Related]
23. Statewide surveillance of halogenated flame retardants in fish in Illinois, USA. Widelka M; Lydy MJ; Wu Y; Chen D Environ Pollut; 2016 Jul; 214():627-634. PubMed ID: 27131823 [TBL] [Abstract][Full Text] [Related]
24. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry. Xu F; García-Bermejo Á; Malarvannan G; Gómara B; Neels H; Covaci A J Chromatogr A; 2015 Jul; 1401():33-41. PubMed ID: 25997844 [TBL] [Abstract][Full Text] [Related]
25. Photochemical and microbial transformation of emerging flame retardants: cause for concern? Chen D; Hale RC; Letcher RJ Environ Toxicol Chem; 2015 Apr; 34(4):687-99. PubMed ID: 25809099 [TBL] [Abstract][Full Text] [Related]
26. A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation. Vorkamp K; Rigét FF Chemosphere; 2014 Sep; 111():379-95. PubMed ID: 24997943 [TBL] [Abstract][Full Text] [Related]
27. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry's law constants. Meylan WM; Howard PH Chemosphere; 2005 Nov; 61(5):640-4. PubMed ID: 15907971 [TBL] [Abstract][Full Text] [Related]
28. Toxicity of new generation flame retardants to Daphnia magna. Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749 [TBL] [Abstract][Full Text] [Related]
29. Association between serum polybrominated diphenyl ethers, new flame retardants and thyroid hormone levels for school students near a petrochemical complex, South China. Guo LC; Xiao J; Zhang Y; Yu S; Lin H; Su G; Liu T; Li X; Lv S; Rutherford S; Ma W Chemosphere; 2018 Jul; 202():476-482. PubMed ID: 29579682 [TBL] [Abstract][Full Text] [Related]
30. Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000-2016). Ali N; Shahzad K; Rashid MI; Shen H; Ismail IMI; Eqani SAMAS Environ Sci Pollut Res Int; 2017 Aug; 24(23):18721-18741. PubMed ID: 28620860 [TBL] [Abstract][Full Text] [Related]
31. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants in air and seawater of the European Arctic. Möller A; Xie Z; Sturm R; Ebinghaus R Environ Pollut; 2011 Jun; 159(6):1577-83. PubMed ID: 21421283 [TBL] [Abstract][Full Text] [Related]
32. QSPR modeling of n-octanol/water partition coefficients and water solubility of PCDEs by the method of Cl substitution position. Chen SD; Zeng XL; Wang ZY; Liu HX Sci Total Environ; 2007 Aug; 382(1):59-69. PubMed ID: 17531292 [TBL] [Abstract][Full Text] [Related]
33. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. McGrath TJ; Ball AS; Clarke BO Environ Pollut; 2017 Nov; 230():741-757. PubMed ID: 28732337 [TBL] [Abstract][Full Text] [Related]
34. Conventional and emerging halogenated flame retardants (HFRs) in sediment of Yangtze River Delta (YRD) region, East China. Zhu B; Lam JC; Yang S; Lam PK Chemosphere; 2013 Sep; 93(3):555-60. PubMed ID: 23859425 [TBL] [Abstract][Full Text] [Related]
35. Determination and prediction of octanol-air partition coefficients for organophosphate flame retardants. Wang Q; Zhao H; Wang Y; Xie Q; Chen J; Quan X Ecotoxicol Environ Saf; 2017 Nov; 145():283-288. PubMed ID: 28755645 [TBL] [Abstract][Full Text] [Related]
36. Polybrominated diphenyl ether flame retardants in the U.S. marine environment: a review. Yogui GT; Sericano JL Environ Int; 2009 Apr; 35(3):655-66. PubMed ID: 19100622 [TBL] [Abstract][Full Text] [Related]
37. Organophosphate Flame Retardants in House Dust from South China and Related Human Exposure Risks. Tan H; Peng C; Guo Y; Wang X; Wu Y; Chen D Bull Environ Contam Toxicol; 2017 Sep; 99(3):344-349. PubMed ID: 28573493 [TBL] [Abstract][Full Text] [Related]
38. Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure. Hassan Y; Shoeib T Sci Total Environ; 2015 Feb; 505():47-55. PubMed ID: 25306095 [TBL] [Abstract][Full Text] [Related]
39. Emerging and legacy flame retardants in indoor dust from East China. Peng C; Tan H; Guo Y; Wu Y; Chen D Chemosphere; 2017 Nov; 186():635-643. PubMed ID: 28818590 [TBL] [Abstract][Full Text] [Related]
40. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. Davis EF; Klosterhaus SL; Stapleton HM Environ Int; 2012 Apr; 40():1-7. PubMed ID: 22280921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]