BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 26613419)

  • 1. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
    König G; Mei Y; Pickard FC; Simmonett AC; Miller BT; Herbert JM; Woodcock HL; Brooks BR; Shao Y
    J Chem Theory Comput; 2016 Jan; 12(1):332-44. PubMed ID: 26613419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
    Jia X; Wang M; Shao Y; König G; Brooks BR; Zhang JZ; Mei Y
    J Chem Theory Comput; 2016 Feb; 12(2):499-511. PubMed ID: 26731197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations.
    Pickard FC; König G; Simmonett AC; Shao Y; Brooks BR
    Bioorg Med Chem; 2016 Oct; 24(20):4988-4997. PubMed ID: 27667551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
    Dybeck EC; König G; Brooks BR; Shirts MR
    J Chem Theory Comput; 2016 Apr; 12(4):1466-80. PubMed ID: 26928941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.
    Sodt AJ; Mei Y; König G; Tao P; Steele RP; Brooks BR; Shao Y
    J Phys Chem A; 2015 Mar; 119(9):1511-23. PubMed ID: 25321186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK
    Pickard FC; König G; Tofoleanu F; Lee J; Simmonett AC; Shao Y; Ponder JW; Brooks BR
    J Comput Aided Mol Des; 2016 Nov; 30(11):1087-1100. PubMed ID: 27646286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level.
    Wang M; Li P; Jia X; Liu W; Shao Y; Hu W; Zheng J; Brooks BR; Mei Y
    J Chem Inf Model; 2017 Oct; 57(10):2476-2489. PubMed ID: 28933850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
    Fu J; Liu Y; Wu J
    J Comput Aided Mol Des; 2014 Mar; 28(3):299-304. PubMed ID: 24622881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.
    Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N
    J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes.
    König G; Hudson PS; Boresch S; Woodcock HL
    J Chem Theory Comput; 2014 Apr; 10(4):1406-1419. PubMed ID: 24803863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating distribution coefficients based on multi-scale free energy simulations: an evaluation of MM and QM/MM explicit solvent simulations of water-cyclohexane transfer in the SAMPL5 challenge.
    König G; Pickard FC; Huang J; Simmonett AC; Tofoleanu F; Lee J; Dral PO; Prasad S; Jones M; Shao Y; Thiel W; Brooks BR
    J Comput Aided Mol Des; 2016 Nov; 30(11):989-1006. PubMed ID: 27577746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration free energies using semiempirical quantum mechanical Hamiltonians and a continuum solvent model with multiple atomic-type parameters.
    Anisimov VM; Cavasotto CN
    J Phys Chem B; 2011 Jun; 115(24):7896-905. PubMed ID: 21585215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive all-atom Monte Carlo sampling and QM/MM corrections in the SAMPL4 hydration free energy challenge.
    Genheden S; Cabedo Martinez AI; Criddle MP; Essex JW
    J Comput Aided Mol Des; 2014 Mar; 28(3):187-200. PubMed ID: 24488307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of the free energy due to electron density fluctuation of a solute in solution: a QM/MM method with perturbation approach combined with a theory of solutions.
    Suzuoka D; Takahashi H; Morita A
    J Chem Phys; 2014 Apr; 140(13):134111. PubMed ID: 24712784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.
    Sampson C; Fox T; Tautermann CS; Woods C; Skylaris CK
    J Phys Chem B; 2015 Jun; 119(23):7030-40. PubMed ID: 25985723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.