These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26613442)

  • 21. A quantum description of radiation damping and the free induction signal in magnetic resonance.
    Tropp J
    J Chem Phys; 2013 Jul; 139(1):014105. PubMed ID: 23822291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arrays of open, independently tunable microcavities.
    Derntl C; Schneider M; Schalko J; Bittner A; Schmiedmayer J; Schmid U; Trupke M
    Opt Express; 2014 Sep; 22(18):22111-20. PubMed ID: 25321586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.
    Jiang C; Cui Y; Zhu KD
    Opt Express; 2014 Jun; 22(11):13773-83. PubMed ID: 24921569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems.
    Kristensen PT; de Lasson JR; Gregersen N
    Opt Lett; 2014 Nov; 39(22):6359-62. PubMed ID: 25490468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics.
    Franke S; Hughes S; Dezfouli MK; Kristensen PT; Busch K; Knorr A; Richter M
    Phys Rev Lett; 2019 May; 122(21):213901. PubMed ID: 31283304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.
    Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M
    Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems.
    Afshar V S; Henderson MR; Greentree AD; Gibson BC; Monro TM
    Opt Express; 2014 May; 22(9):11301-11. PubMed ID: 24921827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antiresonance phase shift in strongly coupled cavity QED.
    Sames C; Chibani H; Hamsen C; Altin PA; Wilk T; Rempe G
    Phys Rev Lett; 2014 Jan; 112(4):043601. PubMed ID: 24580448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cascaded optical transparency in multimode-cavity optomechanical systems.
    Fan L; Fong KY; Poot M; Tang HX
    Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating.
    Taghizadeh A; Chung IS
    Sci Rep; 2017 May; 7(1):2123. PubMed ID: 28522816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cavity Dark Mode of Distant Coupled Atom-Cavity Systems.
    White DH; Kato S; Német N; Parkins S; Aoki T
    Phys Rev Lett; 2019 Jun; 122(25):253603. PubMed ID: 31347899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode.
    Carmon T; Rokhsari H; Yang L; Kippenberg TJ; Vahala KJ
    Phys Rev Lett; 2005 Jun; 94(22):223902. PubMed ID: 16090397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.
    Tian F; Zhou G; Du Y; Chau FS; Deng J; Tang X; Akkipeddi R
    Opt Express; 2013 Jul; 21(15):18398-407. PubMed ID: 23938711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanodot-cavity electrodynamics and photon entanglement.
    Yao W; Liu R; Sham LJ
    Phys Rev Lett; 2004 May; 92(21):217402. PubMed ID: 15245316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of photon number states on demand via cavity quantum electrodynamics.
    Brattke S; Varcoe BT; Walther H
    Phys Rev Lett; 2001 Apr; 86(16):3534-7. PubMed ID: 11328016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer.
    Dobrindt JM; Kippenberg TJ
    Phys Rev Lett; 2010 Jan; 104(3):033901. PubMed ID: 20366641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs.
    Tomljenovic-Hanic S; Greentree AD; Gibson BC; Karle TJ; Prawer S
    Opt Express; 2011 Oct; 19(22):22219-26. PubMed ID: 22109064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.