These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26613451)

  • 1. Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles.
    Magnin Y; Zappelli A; Amara H; Ducastelle F; Bichara C
    Phys Rev Lett; 2015 Nov; 115(20):205502. PubMed ID: 26613451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition.
    Amara H; Bichara C; Ducastelle F
    Phys Rev Lett; 2008 Feb; 100(5):056105. PubMed ID: 18352397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting of Ni and Fe nanoparticles: a molecular dynamics study with application to carbon nanotube synthesis.
    Joshi NP; Spearot DE; Bhat D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5587-93. PubMed ID: 21133078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions.
    Engelmann Y; Bogaerts A; Neyts EC
    Nanoscale; 2014 Oct; 6(20):11981-7. PubMed ID: 25177915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth.
    Diarra M; Zappelli A; Amara H; Ducastelle F; Bichara C
    Phys Rev Lett; 2012 Nov; 109(18):185501. PubMed ID: 23215294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic carbon architectures formed by nanotube core-directed diffusion-limited aggregation of nanoparticles.
    Liu Z; Kong X
    Phys Chem Chem Phys; 2010 Aug; 12(32):9475-80. PubMed ID: 20607160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order-disorder transitions in Pt-Rh nanoparticles.
    Pohl J; Stahl C; Albe K
    Beilstein J Nanotechnol; 2012; 3():1-11. PubMed ID: 22428091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagrams of nanoalloys: influence of size and morphology.
    Berthier F; Maras E; Legrand B
    Phys Chem Chem Phys; 2015 Nov; 17(42):28347-53. PubMed ID: 25994359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early stages in the nucleation process of carbon nanotubes.
    Moors M; Amara H; de Bocarmé TV; Bichara C; Ducastelle F; Kruse N; Charlier JC
    ACS Nano; 2009 Mar; 3(3):511-6. PubMed ID: 19220007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes.
    Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P
    J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.
    Cheng D; Yuan S; Ferrando R
    J Phys Condens Matter; 2013 Sep; 25(35):355008. PubMed ID: 23913101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    J Am Chem Soc; 2011 Jan; 133(3):621-8. PubMed ID: 21142071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale simulations of carbon nanotube nucleation and growth: electronic structure calculations.
    Wells JC; Noid DW; Sumpter BG; Wood RF; Zhang Q
    J Nanosci Nanotechnol; 2004 Apr; 4(4):414-22. PubMed ID: 15296231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting properties of Ag
    Front A; Oucheriah D; Mottet C; Amara H
    Faraday Discuss; 2023 Jan; 242(0):144-159. PubMed ID: 36173312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.
    Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H
    J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum nanoparticles on carbonaceous materials: the effect of support geometry on nanoparticle mobility, morphology, and melting.
    Morrow BH; Striolo A
    Nanotechnology; 2008 May; 19(19):195711. PubMed ID: 21825729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template directed formation of nanoparticle decorated multi-walled carbon nanotube bundles with uniform diameter.
    Han TY; Stadermann M; Baumann TF; Murphy KE; Satcher JH
    Nanotechnology; 2011 Oct; 22(43):435603. PubMed ID: 21967786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption-induced restructuring and early stages of carbon-nanotube growth on Ni nanoparticles.
    Wang Y; Barcaro G; Negreiros FR; Visart de Bocarmé T; Moors M; Kruse N; Hou M; Fortunelli A
    Chemistry; 2013 Jan; 19(1):406-13. PubMed ID: 23169259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.