These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26613453)

  • 1. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.
    Dell ZE; Schweizer KS
    Phys Rev Lett; 2015 Nov; 115(20):205702. PubMed ID: 26613453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular forces and the glass transition.
    Hall RW; Wolynes PG
    J Phys Chem B; 2008 Jan; 112(2):301-12. PubMed ID: 17990867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and gel forming fluids.
    Ghosh A; Schweizer KS
    J Chem Phys; 2019 Dec; 151(24):244502. PubMed ID: 31893898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media.
    Kim K; Miyazaki K; Saito S
    J Phys Condens Matter; 2011 Jun; 23(23):234123. PubMed ID: 21613691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental test of a predicted dynamics-structure-thermodynamics connection in molecularly complex glass-forming liquids.
    Mei B; Zhou Y; Schweizer KS
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonperturbative effect of attractive forces in viscous liquids.
    Berthier L; Tarjus G
    Phys Rev Lett; 2009 Oct; 103(17):170601. PubMed ID: 19905741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation patterns in supercooled liquids from generalized mode-coupling theory.
    Janssen LM; Mayer P; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052306. PubMed ID: 25493795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analogy of the slow dynamics between the supercooled liquid and supercooled plastic crystal states of difluorotetrachloroethane.
    Affouard F; Descamps M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):012501. PubMed ID: 16090015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of aging in structural glasses.
    Lubchenko V; Wolynes PG
    J Chem Phys; 2004 Aug; 121(7):2852-65. PubMed ID: 15291595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature relaxation and entropic barriers in supercooled liquids.
    Mohanty U; Oppenheim I; Taubes CH
    Science; 1994 Oct; 266(5184):425-7. PubMed ID: 17816687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercooled liquids under shear: theory and simulation.
    Miyazaki K; Reichman DR; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011501. PubMed ID: 15324050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids.
    Huang YN; Wang CJ; Riande E
    J Chem Phys; 2005 Apr; 122(14):144502. PubMed ID: 15847540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli.
    Jedrzejowska A; Grzybowski A; Paluch M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18348-18355. PubMed ID: 28678273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic Dynamics of Supercooled Liquids from First Principles.
    Janssen LM; Reichman DR
    Phys Rev Lett; 2015 Nov; 115(20):205701. PubMed ID: 26613452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.