These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26613610)

  • 21. Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Fuglsang A
    Antonie Van Leeuwenhoek; 2004 Aug; 86(2):135-47. PubMed ID: 15280647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Schizosaccharomyces pombe rad3 checkpoint gene.
    Bentley NJ; Holtzman DA; Flaggs G; Keegan KS; DeMaggio A; Ford JC; Hoekstra M; Carr AM
    EMBO J; 1996 Dec; 15(23):6641-51. PubMed ID: 8978690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile use of Schizosaccharomyces pombe plasmids in Saccharomyces cerevisiae.
    Jakopec V; Walla E; Fleig U
    FEMS Yeast Res; 2011 Dec; 11(8):653-5. PubMed ID: 22093749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Schizosaccharomyces pombe GPI8 gene complements a Saccharomyces cerevisiae GPI8 anchoring mutant.
    Shams-Eldin H; Azzouz N; Eckert V; Blaschke T; Kedees MH; Hübel A; Schwarz RT
    Yeast; 2001 Jan; 18(1):33-9. PubMed ID: 11124699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Saccharomyces cerevisiae cdc42-1ts allele and new temperature-conditional-lethal cdc42 alleles.
    Miller PJ; Johnson DI
    Yeast; 1997 May; 13(6):561-72. PubMed ID: 9178507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental studies of deleterious mutation in Saccharomyces cerevisiae.
    Korona R
    Res Microbiol; 2004 Jun; 155(5):301-10. PubMed ID: 15207861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-dimensional single-cell phenotyping reveals extensive haploinsufficiency.
    Ohnuki S; Ohya Y
    PLoS Biol; 2018 May; 16(5):e2005130. PubMed ID: 29768403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved discovery of genetic interactions using CRISPRiSeq across multiple environments.
    Jaffe M; Dziulko A; Smith JD; St Onge RP; Levy SF; Sherlock G
    Genome Res; 2019 Apr; 29(4):668-681. PubMed ID: 30782640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis.
    Omholt SW; Plahte E; Oyehaug L; Xiang K
    Genetics; 2000 Jun; 155(2):969-80. PubMed ID: 10835414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferences about the distribution of dominance drawn from yeast gene knockout data.
    Agrawal AF; Whitlock MC
    Genetics; 2011 Feb; 187(2):553-66. PubMed ID: 21098719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Widespread correlations between dominance and homozygous effects of mutations: implications for theories of dominance.
    Phadnis N; Fry JD
    Genetics; 2005 Sep; 171(1):385-92. PubMed ID: 15972465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Causes and effects of haploinsufficiency.
    Johnson AF; Nguyen HT; Veitia RA
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1774-1785. PubMed ID: 31149781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The genetic and molecular basis of haploinsufficiency in flowering plants.
    Navarro-Quiles C; Lup SD; Muñoz-Nortes T; Candela H; Micol JL
    Trends Plant Sci; 2024 Jan; 29(1):72-85. PubMed ID: 37633803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative genetic interaction mapping using the E-MAP approach.
    Collins SR; Roguev A; Krogan NJ
    Methods Enzymol; 2010; 470():205-31. PubMed ID: 20946812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli.
    Samir P; Rahul ; Slaughter JC; Link AJ
    PLoS One; 2015; 10(8):e0134099. PubMed ID: 26247773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-protein interaction and non-interaction predictions using gene sequence natural vector.
    Zhao N; Zhuo M; Tian K; Gong X
    Commun Biol; 2022 Jul; 5(1):652. PubMed ID: 35780196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The molecular basis of genetic dominance.
    Wilkie AO
    J Med Genet; 1994 Feb; 31(2):89-98. PubMed ID: 8182727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying dominance and deleterious effect on human disease genes.
    Osada N; Mano S; Gojobori J
    Proc Natl Acad Sci U S A; 2009 Jan; 106(3):841-6. PubMed ID: 19139396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear effects in macromolecular assembly and dosage sensitivity.
    Veitia RA
    J Theor Biol; 2003 Jan; 220(1):19-25. PubMed ID: 12453447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping a diversity of genetic interactions in yeast.
    van Leeuwen J; Boone C; Andrews BJ
    Curr Opin Syst Biol; 2017 Dec; 6():14-21. PubMed ID: 30505984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.