These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26613748)
1. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. Söllinger A; Schwab C; Weinmaier T; Loy A; Tveit AT; Schleper C; Urich T FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613748 [TBL] [Abstract][Full Text] [Related]
2. "Methanoplasmatales," Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Paul K; Nonoh JO; Mikulski L; Brune A Appl Environ Microbiol; 2012 Dec; 78(23):8245-53. PubMed ID: 23001661 [TBL] [Abstract][Full Text] [Related]
4. Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the Methanomassiliicoccales. Zinke LA; Evans PN; Santos-Medellín C; Schroeder AL; Parks DH; Varner RK; Rich VI; Tyson GW; Emerson JB Environ Microbiol; 2021 Jan; 23(1):340-357. PubMed ID: 33185945 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal niche separation of Methanomassiliicoccales phylotypes in temperate fens. Weil M; Wang H; Zak D; Urich T FEMS Microbiol Ecol; 2023 May; 99(6):. PubMed ID: 37169886 [TBL] [Abstract][Full Text] [Related]
6. Microbial Community Structures and Methanogenic Functions in Wetland Peat Soils. Prasitwuttisak W; Hoshiko Y; Maeda T; Haraguchi A; Yanagawa K Microbes Environ; 2022; 37(3):. PubMed ID: 35851269 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. Borrel G; Parisot N; Harris HM; Peyretaillade E; Gaci N; Tottey W; Bardot O; Raymann K; Gribaldo S; Peyret P; O'Toole PW; Brugère JF BMC Genomics; 2014 Aug; 15():679. PubMed ID: 25124552 [TBL] [Abstract][Full Text] [Related]
8. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Zhang CJ; Pan J; Liu Y; Duan CH; Li M Microbiome; 2020 Jun; 8(1):94. PubMed ID: 32552798 [TBL] [Abstract][Full Text] [Related]
9. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Iino T; Tamaki H; Tamazawa S; Ueno Y; Ohkuma M; Suzuki K; Igarashi Y; Haruta S Microbes Environ; 2013; 28(2):244-50. PubMed ID: 23524372 [TBL] [Abstract][Full Text] [Related]
10. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. Angel R; Claus P; Conrad R ISME J; 2012 Apr; 6(4):847-62. PubMed ID: 22071343 [TBL] [Abstract][Full Text] [Related]
11. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Horn MA; Matthies C; Küsel K; Schramm A; Drake HL Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979 [TBL] [Abstract][Full Text] [Related]
12. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Narihiro T; Hori T; Nagata O; Hoshino T; Yumoto I; Kamagata Y Biosci Biotechnol Biochem; 2011; 75(9):1727-34. PubMed ID: 21897040 [TBL] [Abstract][Full Text] [Related]
13. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. Ellenbogen JB; Borton MA; McGivern BB; Cronin DR; Hoyt DW; Freire-Zapata V; McCalley CK; Varner RK; Crill PM; Wehr RA; Chanton JP; Woodcroft BJ; Tfaily MM; Tyson GW; Rich VI; Wrighton KC mSystems; 2024 Jan; 9(1):e0069823. PubMed ID: 38063415 [TBL] [Abstract][Full Text] [Related]
14. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. He S; Malfatti SA; McFarland JW; Anderson FE; Pati A; Huntemann M; Tremblay J; Glavina del Rio T; Waldrop MP; Windham-Myers L; Tringe SG mBio; 2015 May; 6(3):e00066-15. PubMed ID: 25991679 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic Degradation of Non-Methane Alkanes by " Laso-Pérez R; Hahn C; van Vliet DM; Tegetmeyer HE; Schubotz F; Smit NT; Pape T; Sahling H; Bohrmann G; Boetius A; Knittel K; Wegener G mBio; 2019 Aug; 10(4):. PubMed ID: 31431553 [TBL] [Abstract][Full Text] [Related]
16. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. Lee JW; Kwon KK; Bahk JJ; Lee DH; Lee HS; Kang SG; Lee JH J Microbiol; 2016 Dec; 54(12):814-822. PubMed ID: 27888460 [TBL] [Abstract][Full Text] [Related]
17. Members of the Genus Smith GJ; Angle JC; Solden LM; Borton MA; Morin TH; Daly RA; Johnston MD; Stefanik KC; Wolfe R; Gil B; Wrighton KC mBio; 2018 Nov; 9(6):. PubMed ID: 30401770 [TBL] [Abstract][Full Text] [Related]
18. Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Söllinger A; Urich T Biochem Soc Trans; 2019 Dec; 47(6):1895-1907. PubMed ID: 31819955 [TBL] [Abstract][Full Text] [Related]
19. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda). Šustr V; Chroňáková A; Semanová S; Tajovský K; Šimek M PLoS One; 2014; 9(7):e102659. PubMed ID: 25028969 [TBL] [Abstract][Full Text] [Related]
20. Genomic Insights into Adaptations of Trimethylamine-Utilizing Methanogens to Diverse Habitats, Including the Human Gut. de la Cuesta-Zuluaga J; Spector TD; Youngblut ND; Ley RE mSystems; 2021 Feb; 6(1):. PubMed ID: 33563787 [No Abstract] [Full Text] [Related] [Next] [New Search]