BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26614059)

  • 21. A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
    Feng J; Li X; Cheng H; Huang W; Kong H; Li Y; Li L
    Mikrochim Acta; 2019 Nov; 186(12):774. PubMed ID: 31728646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultratrace Detection of Histamine Using a Molecularly-Imprinted Polymer-Based Voltammetric Sensor.
    Akhoundian M; Rüter A; Shinde S
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp.
    Sato T; Horiuchi T; Nishimura I
    Anal Biochem; 2005 Nov; 346(2):320-6. PubMed ID: 16236240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence of Histamine in Canned Fish Samples (Tuna, Sardine, Kilka, and Mackerel) from Markets in Tehran.
    Peivasteh-Roudsari L; Rahmani A; Shariatifar N; Tajdar-Oranj B; Mazaheri M; Sadighara P; Khaneghah AM
    J Food Prot; 2020 Jan; 83(1):136-141. PubMed ID: 31855616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis.
    Tan A; Zhao Y; Sivashanmugan K; Squire K; Wang AX
    Food Control; 2019 Sep; 103():111-118. PubMed ID: 31827314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorometric determination of histamine in tuna: collaborative study.
    Staruszkiewicz WF
    J Assoc Off Anal Chem; 1977 Sep; 60(5):1131-6. PubMed ID: 561056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilateral efforts to improve SERS detection efficiency of exosomes by Au/Na
    Zhao Q; Cheng X; Hu S; Zhao M; Chen J; Mu M; Yang Y; Liu H; Hu L; Zhao B; Song W
    Biosens Bioelectron; 2024 Aug; 258():116349. PubMed ID: 38705072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes.
    Liu R; Sha M; Jiang S; Luo J; Liu X
    Talanta; 2014 Mar; 120():76-83. PubMed ID: 24468345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of neonicotinoids in agricultural products using magnetic molecularly imprinted polymers-surface enhanced Raman spectroscopy.
    Cao X; Hu Y; Yu H; Sun S; Xu D; Zhang Z; Cong S; She Y
    Talanta; 2024 Jan; 266(Pt 1):125000. PubMed ID: 37524038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecularly imprinted polymer-based SERS sensing of transferrin in human serum.
    Wang XY; Liu AR; Liu SQ
    Analyst; 2024 Jun; 149(12):3363-3371. PubMed ID: 38712505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor.
    Feng J; Hu Y; Grant E; Lu X
    Food Chem; 2018 Jan; 239():816-822. PubMed ID: 28873639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Ag-molecularly imprinted polymer composite for efficient surface-enhanced Raman scattering activities under a low-energy laser.
    Chen S; Li X; Guo Y; Qi J
    Analyst; 2015 May; 140(9):3239-43. PubMed ID: 25773587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecularly imprinted core-shell Au nanoparticles for 2,4-dichlorophenoxyacetic acid detection in milk using surface-enhanced Raman spectroscopy.
    Feng S; Hu Y; Chen L; Lu X
    Anal Chim Acta; 2022 Sep; 1227():340333. PubMed ID: 36089302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples.
    Ning F; Peng H; Dong L; Zhang Z; Li J; Chen L; Xiong H
    J Agric Food Chem; 2014 Nov; 62(46):11138-45. PubMed ID: 25352428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid preparation of molecularly imprinted polymer by frontal polymerization.
    Zhong DD; Liu X; Pang QQ; Huang YP; Liu ZS
    Anal Bioanal Chem; 2013 Apr; 405(10):3205-14. PubMed ID: 23392405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen.
    Carneiro MCCG; Sousa-Castillo A; Correa-Duarte MA; Sales MGF
    Biosens Bioelectron; 2019 Dec; 146():111761. PubMed ID: 31614254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoconjugation of Molecularly Imprinted Polymer Nanoparticles for Surface-Enhanced Raman Detection of Propranolol.
    Kamra T; Xu C; Montelius L; Schnadt J; Wijesundera SA; Yan M; Ye L
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27479-85. PubMed ID: 26595262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor.
    Zhao B; Feng S; Hu Y; Wang S; Lu X
    Food Chem; 2019 Mar; 276():366-375. PubMed ID: 30409607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.
    Hang H; Li C; Pan J; Li L; Dai J; Dai X; Yu P; Feng Y
    J Sep Sci; 2013 Oct; 36(19):3285-94. PubMed ID: 23894024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.
    Mao Y; Bao Y; Gan S; Li F; Niu L
    Biosens Bioelectron; 2011 Oct; 28(1):291-7. PubMed ID: 21824760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.