BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26614076)

  • 1. High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays.
    Gao L; Lee SS; Chen J; Sun H; Zhao Y; Chai Z; Hu Y
    Methods Mol Biol; 2016; 1368():181-96. PubMed ID: 26614076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-based high-throughput determination of PTPs substrate specificity using a phosphopeptide microarray.
    Gao L; Sun H; Yao SQ
    Biopolymers; 2010; 94(6):810-9. PubMed ID: 20725946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray.
    Sun H; Tan LP; Gao L; Yao SQ
    Chem Commun (Camb); 2009 Feb; (6):677-9. PubMed ID: 19322419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Protein-Protein Interactions of Tyrosine Phosphatases with Microarrayed Fragment Libraries Displayed on Phosphopeptide Substrate Scaffolds.
    Hogan M; Bahta M; Tsuji K; Nguyen TX; Cherry S; Lountos GT; Tropea JE; Zhao BM; Zhao XZ; Waugh DS; Burke TR; Ulrich RG
    ACS Comb Sci; 2019 Mar; 21(3):158-170. PubMed ID: 30629404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: Isolation of substrates for protein tyrosine phosphatase receptor type z.
    Fukada M; Kawachi H; Fujikawa A; Noda M
    Methods; 2005 Jan; 35(1):54-63. PubMed ID: 15588986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases.
    Fukada M; Noda M
    Methods Mol Biol; 2007; 365():371-82. PubMed ID: 17200575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide microarrays for high-throughput studies of Ser/Thr phosphatases.
    Sun H; Lu CH; Shi H; Gao L; Yao SQ
    Nat Protoc; 2008; 3(9):1485-93. PubMed ID: 18772876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease.
    Pulido R; Stoker AW; Hendriks WJ
    Hum Mol Genet; 2013 Oct; 22(R1):R66-76. PubMed ID: 23900072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to studying protein tyrosine phosphatases.
    Liang F; Kumar S; Zhang ZY
    Mol Biosyst; 2007 May; 3(5):308-16. PubMed ID: 17460790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Extended Family of Protein Tyrosine Phosphatases.
    Alonso A; Nunes-Xavier CE; Bayón Y; Pulido R
    Methods Mol Biol; 2016; 1447():1-23. PubMed ID: 27514797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes.
    Chu HM; Wang AH
    Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phosphotyrosine-containing quenched fluorogenic peptide as a novel substrate for protein tyrosine phosphatases.
    Nishikata M; Suzuki K; Yoshimura Y; Deyama Y; Matsumoto A
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):385-91. PubMed ID: 10510304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular Interactions of small-molecule inhibitors affecting the YopH protein tyrosine phosphatase.
    Hogan M; Bahta M; Cherry S; Lountos GT; Tropea JE; Zhao BM; Burke TR; Waugh DS; Ulrich RG
    Chem Biol Drug Des; 2013 Mar; 81(3):323-33. PubMed ID: 23241354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases.
    Palma A; Tinti M; Paoluzi S; Santonico E; Brandt BW; Hooft van Huijsduijnen R; Masch A; Heringa J; Schutkowski M; Castagnoli L; Cesareni G
    J Biol Chem; 2017 Mar; 292(12):4942-4952. PubMed ID: 28159843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide Microarrays for Real-Time Kinetic Profiling of Tyrosine Phosphatase Activity of Recombinant Phosphatases and Phosphatases in Lysates of Cells or Tissue Samples.
    Hovestad-Bijl L; van Ameijde J; Pijnenburg D; Hilhorst R; Liskamp R; Ruijtenbeek R
    Methods Mol Biol; 2016; 1447():67-78. PubMed ID: 27514800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor.
    Pasquali C; Curchod ML; Wälchli S; Espanel X; Guerrier M; Arigoni F; Strous G; Hooft van Huijsduijnen R
    Mol Endocrinol; 2003 Nov; 17(11):2228-39. PubMed ID: 12907755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic substrate enhancement for the identification of specific, second-site-binding fragments targeting a set of protein tyrosine phosphatases.
    Schmidt MF; Groves MR; Rademann J
    Chembiochem; 2011 Nov; 12(17):2640-6. PubMed ID: 22052725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer.
    Nishikata M; Yoshimura Y; Deyama Y; Suzuki K
    Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo.
    Meng TC; Hsu SF; Tonks NK
    Methods; 2005 Jan; 35(1):28-36. PubMed ID: 15588983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases.
    Welte S; Baringhaus KH; Schmider W; Müller G; Petry S; Tennagels N
    Anal Biochem; 2005 Mar; 338(1):32-8. PubMed ID: 15707933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.