BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26614278)

  • 21. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.
    De Marchis F; Bellucci M; Pompa A
    Plant Biotechnol J; 2016 Feb; 14(2):603-14. PubMed ID: 26031839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plastid transformation in sugar beet: Beta vulgaris.
    De Marchis F; Bellucci M
    Methods Mol Biol; 2014; 1132():367-73. PubMed ID: 24599867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of the truncated tissue plasminogen activator (K2S) gene in tobacco chloroplast.
    Abdoli-Nasab M; Jalali-Javaran M; Cusidó RM; Palazón J; Baghizadeh A; Alizadeh H
    Mol Biol Rep; 2013 Oct; 40(10):5749-58. PubMed ID: 24114696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.
    Bock R
    Annu Rev Plant Biol; 2015; 66():211-41. PubMed ID: 25494465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants.
    Abdoli Nasab M; Jalali Javaran M; Cusido RM; Palazon J
    Plant Physiol Biochem; 2016 Nov; 108():139-144. PubMed ID: 27428368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens.
    Kumar S; Daniell H
    Methods Mol Biol; 2004; 267():365-83. PubMed ID: 15269437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transfer of transformed chloroplasts from Nicotiana tabacum to the Lycium barbarum plants.
    Sytnik E; Komarnytsky I; Gleba Y; Kuchuk N
    Cell Biol Int; 2005 Jan; 29(1):71-5. PubMed ID: 15763502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes.
    Fumagalli M; Gerace D; Faè M; Iadarola P; Leelavathi S; Reddy VS; Cella R
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9479-9491. PubMed ID: 31701198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger.
    Rigano MM; Manna C; Giulini A; Pedrazzini E; Capobianchi M; Castilletti C; Di Caro A; Ippolito G; Beggio P; De Giuli Morghen C; Monti L; Vitale A; Cardi T
    Plant Biotechnol J; 2009 Aug; 7(6):577-91. PubMed ID: 19508274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light.
    Wirth S; Segretin ME; Mentaberry A; Bravo-Almonacid F
    J Biotechnol; 2006 Sep; 125(2):159-72. PubMed ID: 16584796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nicotiana tabacum: PEG-mediated plastid transformation.
    Díaz AH; Koop HU
    Methods Mol Biol; 2014; 1132():165-75. PubMed ID: 24599852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants.
    Morgenfeld MM; Vater CF; Alfano EF; Boccardo NA; Bravo-Almonacid FF
    Transgenic Res; 2020 Jun; 29(3):295-305. PubMed ID: 32318934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology.
    Occhialini A; Pfotenhauer AC; Frazier TP; Li L; Harbison SA; Lail AJ; Mebane Z; Piatek AA; Rigoulot SB; Daniell H; Stewart CN; Lenaghan SC
    Sci Rep; 2020 Dec; 10(1):21144. PubMed ID: 33273600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts.
    Newell CA; Birch-Machin I; Hibberd JM; Gray JC
    Transgenic Res; 2003 Oct; 12(5):631-4. PubMed ID: 14601661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transgene-induced pleiotropic effects in transplastomic plants.
    Scotti N; Cardi T
    Biotechnol Lett; 2014 Feb; 36(2):229-39. PubMed ID: 24101241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast.
    Yarbakht M; Jalali-Javaran M; Nikkhah M; Mohebodini M
    Biotechnol Appl Biochem; 2015; 62(1):55-63. PubMed ID: 24716841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus.
    Isemer R; Mulisch M; Schäfer A; Kirchner S; Koop HU; Krupinska K
    FEBS Lett; 2012 Jan; 586(1):85-8. PubMed ID: 22154598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unsolved problems in plastid transformation.
    Rigano MM; Scotti N; Cardi T
    Bioengineered; 2012; 3(6):329-33. PubMed ID: 22892591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic plastids in basic research and plant biotechnology.
    Bock R
    J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-level expression of a human β-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice.
    Youm JW; Jeon JH; Kim H; Min SR; Kim MS; Joung H; Jeong WJ; Kim HS
    Transgenic Res; 2010 Dec; 19(6):1099-108. PubMed ID: 20229285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.