These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26614278)

  • 41. Hyper-expression of GFP-fused active hFGF21 in tobacco chloroplasts.
    Wang Y; Wei Z; Fan J; Song X; Xing S
    Protein Expr Purif; 2023 Aug; 208-209():106271. PubMed ID: 37084839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-yield production of a human therapeutic protein in tobacco chloroplasts.
    Staub JM; Garcia B; Graves J; Hajdukiewicz PT; Hunter P; Nehra N; Paradkar V; Schlittler M; Carroll JA; Spatola L; Ward D; Ye G; Russell DA
    Nat Biotechnol; 2000 Mar; 18(3):333-8. PubMed ID: 10700152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic engineering of the chloroplast: novel tools and new applications.
    Bock R
    Curr Opin Biotechnol; 2014 Apr; 26():7-13. PubMed ID: 24679252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plastid transformation of tobacco suspension cell cultures.
    Staub JM
    Methods Mol Biol; 2014; 1132():177-85. PubMed ID: 24599853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient expression of fusion human epidermal growth factor in tobacco chloroplasts.
    Wang Y; Fan J; Wei Z; Xing S
    BMC Biotechnol; 2023 Jan; 23(1):1. PubMed ID: 36611158
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins.
    Bally J; Paget E; Droux M; Job C; Job D; Dubald M
    Plant Biotechnol J; 2008 Jan; 6(1):46-61. PubMed ID: 17944820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.
    Albarracín RM; Becher ML; Farran I; Sander VA; Corigliano MG; Yácono ML; Pariani S; López ES; Veramendi J; Clemente M
    Biotechnol J; 2015 May; 10(5):748-59. PubMed ID: 25823559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plastid transformation for abiotic stress tolerance in plants.
    Bansal KC; Singh AK; Wani SH
    Methods Mol Biol; 2012; 913():351-8. PubMed ID: 22895771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes.
    Chin HG; Kim GD; Marin I; Mersha F; Evans TC; Chen L; Xu MQ; Pradhan S
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4510-5. PubMed ID: 12671070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Advances in chloroplast expression of recombinant proteins in higher plants].
    Lin Y; Cheng X; Yang D; Liang Z; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2018 May; 34(5):631-643. PubMed ID: 29893071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor.
    Michoux F; Ahmad N; McCarthy J; Nixon PJ
    Plant Biotechnol J; 2011 Jun; 9(5):575-84. PubMed ID: 21105992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.
    Wang YP; Wei ZY; Zhong XF; Lin CJ; Cai YH; Ma J; Zhang YY; Liu YZ; Xing SC
    Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26703590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule.
    Gisby MF; Mellors P; Madesis P; Ellin M; Laverty H; O'Kane S; Ferguson MW; Day A
    Plant Biotechnol J; 2011 Jun; 9(5):618-28. PubMed ID: 21535357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chloroplast transformation for engineering of photosynthesis.
    Hanson MR; Gray BN; Ahner BA
    J Exp Bot; 2013 Jan; 64(3):731-42. PubMed ID: 23162121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chloroplast genetic engineering via organogenesis or somatic embryogenesis.
    Dhingra A; Daniell H
    Methods Mol Biol; 2006; 323():245-62. PubMed ID: 16739583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chloroplast tubules visualized in transplastomic plants expressing green fluorescent protein.
    Shiina T; Hayashi K; Ishii N; Morikawa K; Toyoshima Y
    Plant Cell Physiol; 2000 Mar; 41(3):367-71. PubMed ID: 10805601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.
    Bertalan I; Munder MC; Weiß C; Kopf J; Fischer D; Johanningmeier U
    J Biotechnol; 2015 Feb; 195():60-6. PubMed ID: 25554634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A modular cloning toolbox for the generation of chloroplast transformation vectors.
    Vafaee Y; Staniek A; Mancheno-Solano M; Warzecha H
    PLoS One; 2014; 9(10):e110222. PubMed ID: 25302695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Precise excision of plastid DNA by the large serine recombinase Bxb1.
    Shao M; Kumar S; Thomson JG
    Plant Biotechnol J; 2014 Apr; 12(3):322-9. PubMed ID: 24261912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves.
    Maliga P; Tungsuchat-Huang T
    Methods Mol Biol; 2014; 1132():147-63. PubMed ID: 24599851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.