These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26614329)

  • 1. Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory.
    Pitoňák M; Heßelmann A
    J Chem Theory Comput; 2010 Jan; 6(1):168-78. PubMed ID: 26614329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular potential energy surface for CS2 dimer.
    Farrokhpour H; Mombeini Z; Namazian M; Coote ML
    J Comput Chem; 2011 Apr; 32(5):797-809. PubMed ID: 20941736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
    Antony J; Grimme S
    J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration.
    Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P
    Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set.
    Flick JC; Kosenkov D; Hohenstein EG; Sherrill CD; Slipchenko LV
    J Chem Theory Comput; 2012 Aug; 8(8):2835-43. PubMed ID: 26592124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Interaction Energies for Problematic Dispersion-Bound Complexes: Homogeneous Dimers of NCCN, P2, and PCCP.
    Hohenstein EG; Jaeger HM; Carrell EJ; Tschumper GS; Sherrill CD
    J Chem Theory Comput; 2011 Sep; 7(9):2842-51. PubMed ID: 26605475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions.
    Takatani T; David Sherrill C
    Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species.
    Tan S; Barrera Acevedo S; Izgorodina EI
    J Chem Phys; 2017 Feb; 146(6):064108. PubMed ID: 28201921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.
    Chen JL; Sun T; Wang YB; Wang W
    J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods.
    Řezáč J; Huang Y; Hobza P; Beran GJ
    J Chem Theory Comput; 2015 Jul; 11(7):3065-79. PubMed ID: 26575743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the coupled-cluster singles and doubles method via scaling same- and opposite-spin components of the double excitation correlation energy.
    Takatani T; Hohenstein EG; Sherrill CD
    J Chem Phys; 2008 Mar; 128(12):124111. PubMed ID: 18376912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory study of the interaction of vinyl radical, ethyne, and ethene with benzene, aimed to define an affordable computational level to investigate stability trends in large van der Waals complexes.
    Maranzana A; Giordana A; Indarto A; Tonachini G; Barone V; Causà M; Pavone M
    J Chem Phys; 2013 Dec; 139(24):244306. PubMed ID: 24387369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.