These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26614496)

  • 1. Non-local rheology in dense granular flows: Revisiting the concept of fluidity.
    Bouzid M; Izzet A; Trulsson M; Clément E; Claudin P; Andreotti B
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):125. PubMed ID: 26614496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperativity flows and shear-bandings: a statistical field theory approach.
    Benzi R; Sbragaglia M; Bernaschi M; Succi S; Toschi F
    Soft Matter; 2016 Jan; 12(2):514-30. PubMed ID: 26486875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of granular materials: dynamics in a stress landscape.
    Bi D; Chakraborty B
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5073-90. PubMed ID: 19933128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A constitutive law for dense granular flows.
    Jop P; Forterre Y; Pouliquen O
    Nature; 2006 Jun; 441(7094):727-30. PubMed ID: 16760972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical tests of constitutive laws for dense granular flows.
    Lois G; Lemaître A; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051303. PubMed ID: 16383599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of sediment transported by a laminar flow.
    Houssais M; Ortiz CP; Durian DJ; Jerolmack DJ
    Phys Rev E; 2016 Dec; 94(6-1):062609. PubMed ID: 28085450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations.
    Volfson D; Tsimring LS; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021301. PubMed ID: 14524963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Class of dilute granular Couette flows with uniform heat flux.
    Vega Reyes F; Garzó V; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021302. PubMed ID: 21405838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow.
    Mitarai N; Nakanishi H
    Phys Rev Lett; 2005 Apr; 94(12):128001. PubMed ID: 15903963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosity bifurcation in granular materials, foams, and emulsions.
    Da Cruz F; Chevoir F; Bonn D; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051305. PubMed ID: 12513483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear banding in soft glassy materials.
    Fielding SM
    Rep Prog Phys; 2014 Oct; 77(10):102601. PubMed ID: 25303030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical screening effects in correlated electron materials-a progress report on combined many-body perturbation and dynamical mean field theory: 'GW + DMFT'.
    Biermann S
    J Phys Condens Matter; 2014 Apr; 26(17):173202. PubMed ID: 24722486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of a repose angle: kinetics of rearrangement for granular materials.
    Lemaître A
    Phys Rev Lett; 2002 Aug; 89(6):064303. PubMed ID: 12190585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlocal rheological properties of granular flows near a jamming limit.
    Aranson IS; Tsimring LS; Malloggi F; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031303. PubMed ID: 18851027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-local rheology for dense granular flows.
    Pouliquen O; Forterre Y
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5091-107. PubMed ID: 19933129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive relations for steady, dense granular flows.
    Berzi D; di Prisco CG; Vescovi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031301. PubMed ID: 22060355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlocal rheology of granular flows across yield conditions.
    Bouzid M; Trulsson M; Claudin P; Clément E; Andreotti B
    Phys Rev Lett; 2013 Dec; 111(23):238301. PubMed ID: 24476308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling rheology
    Fazelpour F; Daniels KE
    Soft Matter; 2023 Mar; 19(12):2168-2175. PubMed ID: 36852754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging.
    Ovarlez G; Rodts S; Ragouilliaux A; Coussot P; Goyon J; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036307. PubMed ID: 18851143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.