BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26614558)

  • 1. Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications.
    Goonoo N; Jeetah R; Bhaw-Luximon A; Jhurry D
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt B):371-91. PubMed ID: 26614558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polymers for electrospinning: towards biomedical applications.
    Kai D; Liow SS; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():659-70. PubMed ID: 25491875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning polydioxanone for biomedical applications.
    Boland ED; Coleman BD; Barnes CP; Simpson DG; Wnek GE; Bowlin GL
    Acta Biomater; 2005 Jan; 1(1):115-23. PubMed ID: 16701785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun inorganic and polymer composite nanofibers for biomedical applications.
    Sridhar R; Sundarrajan S; Venugopal JR; Ravichandran R; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(4):365-85. PubMed ID: 23565681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration.
    Goonoo N; Fahmi A; Jonas U; Gimié F; Arsa IA; Bénard S; Schönherr H; Bhaw-Luximon A
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5834-5850. PubMed ID: 30640432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating matrix-multicellular response using polysucrose-blended with poly-L-lactide or polydioxanone in electrospun scaffolds for skin tissue regeneration.
    Chummun I; Bhaw-Luximon A; Jhurry D
    J Biomed Mater Res A; 2018 Dec; 106(12):3275-3291. PubMed ID: 30367544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach.
    Ercolani E; Del Gaudio C; Bianco A
    J Tissue Eng Regen Med; 2015 Aug; 9(8):861-88. PubMed ID: 23365048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery.
    Yoo HS; Kim TG; Park TG
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1033-42. PubMed ID: 19643152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery.
    Garg T; Rath G; Goyal AK
    J Drug Target; 2015 Apr; 23(3):202-21. PubMed ID: 25539071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering.
    He W; Yong T; Teo WE; Ma Z; Ramakrishna S
    Tissue Eng; 2005; 11(9-10):1574-88. PubMed ID: 16259611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of nanofiber matrix as tissue-engineering scaffolds.
    Ma Z; Kotaki M; Inai R; Ramakrishna S
    Tissue Eng; 2005; 11(1-2):101-9. PubMed ID: 15738665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study.
    Smith MJ; McClure MJ; Sell SA; Barnes CP; Walpoth BH; Simpson DG; Bowlin GL
    Acta Biomater; 2008 Jan; 4(1):58-66. PubMed ID: 17897890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning.
    Hu J; Wei J; Liu W; Chen Y
    J Biomater Sci Polym Ed; 2013; 24(8):972-85. PubMed ID: 23647252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospinning: applications in drug delivery and tissue engineering.
    Sill TJ; von Recum HA
    Biomaterials; 2008 May; 29(13):1989-2006. PubMed ID: 18281090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.