BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26614799)

  • 1. Double-network hydrogel and its potential biomedical application: A review.
    Nonoyama T; Gong JP
    Proc Inst Mech Eng H; 2015 Dec; 229(12):853-63. PubMed ID: 26614799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method.
    Higa K; Kitamura N; Kurokawa T; Goto K; Wada S; Nonoyama T; Kanaya F; Sugahara K; Gong JP; Yasuda K
    Acta Biomater; 2016 Oct; 43():38-49. PubMed ID: 27427226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double network hydrogels based on semi-rigid polyelectrolyte physical networks.
    Takahashi R; Ikai T; Kurokawa T; King DR; Gong JP
    J Mater Chem B; 2019 Oct; 7(41):6347-6354. PubMed ID: 31642851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone.
    Mredha MTI; Kitamura N; Nonoyama T; Wada S; Goto K; Zhang X; Nakajima T; Kurokawa T; Takagi Y; Yasuda K; Gong JP
    Biomaterials; 2017 Jul; 132():85-95. PubMed ID: 28411451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.
    Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double network hydrogel for tissue engineering.
    Gu Z; Huang K; Luo Y; Zhang L; Kuang T; Chen Z; Liao G
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1520. PubMed ID: 29664220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough Double Network Hydrogel and Its Biomedical Applications.
    Nonoyama T; Gong JP
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():393-410. PubMed ID: 33770463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing silk hydrogel and its applications in biomedical materials.
    Wang HY; Zhang YQ
    Biotechnol Prog; 2015; 31(3):630-40. PubMed ID: 25740113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Double-Network Hydrogels with Universal Adhesion and Superior Extensibility and Cytocompatibility by One-Pot Method.
    Sun H; Zhang M; Liu M; Yu Y; Xu X; Li J
    Biomacromolecules; 2020 Dec; 21(12):4699-4708. PubMed ID: 33075226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.
    Ni Y; Tang Z; Cao W; Lin H; Fan Y; Guo L; Zhang X
    Int J Biol Macromol; 2015 Mar; 74():367-75. PubMed ID: 25445680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design.
    Chen G; Tang S; Yan H; Zhu X; Wang H; Ma L; Mao K; Yang C; Ran J
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture.
    Schagemann JC; Mrosek EH; Landers R; Kurz H; Erggelet C
    Cells Tissues Organs; 2006; 182(2):89-97. PubMed ID: 16804299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials.
    Huang J; Frauenlob M; Shibata Y; Wang L; Nakajima T; Nonoyama T; Tsuda M; Tanaka S; Kurokawa T; Gong JP
    Biomacromolecules; 2020 Oct; 21(10):4220-4230. PubMed ID: 32936628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix--an in vitro study.
    Remya NS; Nair PD
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):575-82. PubMed ID: 25427458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating the mechanical properties of biomimetic hydrogels with multivalent host-guest interactions.
    Yang B; Wei Z; Chen X; Wei K; Bian L
    J Mater Chem B; 2019 Mar; 7(10):1726-1733. PubMed ID: 32254914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.