These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26614799)

  • 21. A tough double network hydrogel for cartilage tissue engineering.
    Fan C; Liao L; Zhang C; Liu L
    J Mater Chem B; 2013 Sep; 1(34):4251-4258. PubMed ID: 32261020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioprinted Scaffolds for Cartilage Tissue Engineering.
    Kang HW; Yoo JJ; Atala A
    Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds.
    Suo H; Xu K; Zheng X
    J Biomater Appl; 2015 Feb; 29(7):977-87. PubMed ID: 25248323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of Tough, in Situ Forming Double-Network Hydrogels with Good Biocompatibility.
    Bu Y; Shen H; Yang F; Yang Y; Wang X; Wu D
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2205-2212. PubMed ID: 28029238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.
    Mercuri JJ; Patnaik S; Dion G; Gill SS; Liao J; Simionescu DT
    Tissue Eng Part A; 2013 Apr; 19(7-8):952-66. PubMed ID: 23140227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels.
    Zhao Y; Nakajima T; Yang JJ; Kurokawa T; Liu J; Lu J; Mizumoto S; Sugahara K; Kitamura N; Yasuda K; Daniels AU; Gong JP
    Adv Mater; 2014 Jan; 26(3):436-42. PubMed ID: 24431128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toughening Hydrogels with Fibrillar Connected Double Networks.
    Fang YH; Liang C; Liljeström V; Lv ZP; Ikkala O; Zhang H
    Adv Mater; 2024 Jul; 36(27):e2402282. PubMed ID: 38577824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review.
    Murakami T; Yarimitsu S; Nakashima K; Sakai N; Yamaguchi T; Sawae Y; Suzuki A
    Proc Inst Mech Eng H; 2015 Dec; 229(12):864-78. PubMed ID: 26614800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering.
    Chen Y; Bilgen B; Pareta RA; Myles AJ; Fenniri H; Ciombor DM; Aaron RK; Webster TJ
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1233-43. PubMed ID: 20184414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical Applications of Hemicellulose-Based Hydrogels.
    Liu H; Chen T; Dong C; Pan X
    Curr Med Chem; 2020; 27(28):4647-4659. PubMed ID: 32268859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules.
    Xu L; Wang C; Cui Y; Li A; Qiao Y; Qiu D
    Sci Adv; 2019 Feb; 5(2):eaau3442. PubMed ID: 30746486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soft-hard hybrid covalent-network polymer sponges with super resilience, recoverable energy dissipation and fatigue resistance under large deformation.
    Wang K; Yin R; Lu Y; Qiao H; Zhu Q; He J; Zhou W; Zhang H; Tang T; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112185. PubMed ID: 34082984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.