These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26614799)

  • 41. Toughening Double-Network Hydrogels by Polyelectrolytes.
    Zhang M; Yang Y; Li M; Shang Q; Xie R; Yu J; Shen K; Zhang Y; Cheng Y
    Adv Mater; 2023 Jun; 35(26):e2301551. PubMed ID: 36940146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods.
    Gan D; Han L; Wang M; Xing W; Xu T; Zhang H; Wang K; Fang L; Lu X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36218-36228. PubMed ID: 30251533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrogels with Tunable Properties.
    Chan PP
    Methods Mol Biol; 2015; 1340():121-32. PubMed ID: 26445834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds.
    Fukao K; Tanaka K; Kiyama R; Nonoyama T; Gong JP
    J Mater Chem B; 2020 Jun; 8(24):5184-5188. PubMed ID: 32412026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair.
    Söntjens SH; Nettles DL; Carnahan MA; Setton LA; Grinstaff MW
    Biomacromolecules; 2006 Jan; 7(1):310-6. PubMed ID: 16398530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect.
    Tao Z; Fan H; Huang J; Sun T; Kurokawa T; Gong JP
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37139-37146. PubMed ID: 31525861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.
    Boere KW; Visser J; Seyednejad H; Rahimian S; Gawlitta D; van Steenbergen MJ; Dhert WJ; Hennink WE; Vermonden T; Malda J
    Acta Biomater; 2014 Jun; 10(6):2602-11. PubMed ID: 24590160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and its Application as a Tubular Grasper.
    Yu HC; Zheng SY; Fang L; Ying Z; Du M; Wang J; Ren KF; Wu ZL; Zheng Q
    Adv Mater; 2020 Dec; 32(49):e2005171. PubMed ID: 33150633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect.
    Yasuda K; Kitamura N; Gong JP; Arakaki K; Kwon HJ; Onodera S; Chen YM; Kurokawa T; Kanaya F; Ohmiya Y; Osada Y
    Macromol Biosci; 2009 Apr; 9(4):307-16. PubMed ID: 19031389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tough bonding of hydrogels to diverse non-porous surfaces.
    Yuk H; Zhang T; Lin S; Parada GA; Zhao X
    Nat Mater; 2016 Feb; 15(2):190-6. PubMed ID: 26552058
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing Double-Network Hydrogel for Biomedical Soft Robots.
    Banerjee H; Ren H
    Soft Robot; 2017 Sep; 4(3):191-201. PubMed ID: 29182087
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage.
    Wright LD; McKeon-Fischer KD; Cui Z; Nair LS; Freeman JW
    J Tissue Eng Regen Med; 2014 Dec; 8(12):946-54. PubMed ID: 23109502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.