These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26614799)

  • 61. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.
    Blum MM; Ovaert TC
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4377-83. PubMed ID: 23910356
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation.
    Rampichová M; Filová E; Varga F; Lytvynets A; Prosecká E; Koláčná L; Motlík J; Nečas A; Vajner L; Uhlík J; Amler E
    ASAIO J; 2010; 56(6):563-8. PubMed ID: 20966745
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering a semi-interpenetrating constructed xylan-based hydrogel with superior compressive strength, resilience, and creep recovery abilities.
    Han T; Song T; Pranovich A; Rojas OJ
    Carbohydr Polym; 2022 Oct; 294():119772. PubMed ID: 35868790
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial.
    Mironi-Harpaz I; Berdichevski A; Seliktar D
    Methods Mol Biol; 2014; 1181():61-8. PubMed ID: 25070327
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Creation of artificial cartilage by nanotechnology].
    Murosaki T; Gong JP; Osada Y
    Nihon Rinsho; 2006 Feb; 64(2):206-14. PubMed ID: 16454171
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of biological responses to micro-particles derived from a double network hydrogel.
    Matsumae G; Terkawi MA; Nonoyama T; Kurokawa T; Takahashi D; Shimizu T; Kadoya K; Gong JP; Yasuda K; Iwasaki N
    Biomater Sci; 2022 May; 10(9):2182-2187. PubMed ID: 35348130
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels.
    Lin W; Wei X; Liu S; Zhang J; Yang T; Chen S
    Gels; 2022 Sep; 8(9):. PubMed ID: 36135292
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Arrays of 3D double-network hydrogels for the high-throughput discovery of materials with enhanced physical and biological properties.
    Duffy C; Venturato A; Callanan A; Lilienkampf A; Bradley M
    Acta Biomater; 2016 Apr; 34():104-112. PubMed ID: 26712601
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
    Tonsomboon K; Oyen ML
    J Mech Behav Biomed Mater; 2013 May; 21():185-94. PubMed ID: 23566770
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2.
    Lee HR; Park KM; Joung YK; Park KD; Do SH
    J Control Release; 2012 May; 159(3):332-7. PubMed ID: 22366523
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels.
    Xu X; Jerca VV; Hoogenboom R
    Mater Horiz; 2021 Apr; 8(4):1173-1188. PubMed ID: 34821910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation.
    Truong VX; Ablett MP; Richardson SM; Hoyland JA; Dove AP
    J Am Chem Soc; 2015 Feb; 137(4):1618-22. PubMed ID: 25590670
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair.
    Jiang J; Tang A; Ateshian GA; Guo XE; Hung CT; Lu HH
    Ann Biomed Eng; 2010 Jun; 38(6):2183-96. PubMed ID: 20411332
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization.
    Frisman I; Shachaf Y; Seliktar D; Bianco-Peled H
    Langmuir; 2011 Jun; 27(11):6977-86. PubMed ID: 21542599
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects.
    Kim M; Hong B; Lee J; Kim SE; Kang SS; Kim YH; Tae G
    Biomacromolecules; 2012 Aug; 13(8):2287-98. PubMed ID: 22758918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.