BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26615097)

  • 1. Treg Cell Differentiation: From Thymus to Peripheral Tissue.
    Richards DM; Delacher M; Goldfarb Y; Kägebein D; Hofer AC; Abramson J; Feuerer M
    Prog Mol Biol Transl Sci; 2015; 136():175-205. PubMed ID: 26615097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Molecular Control of Regulatory T Cell Induction.
    van Nieuwenhuijze A; Liston A
    Prog Mol Biol Transl Sci; 2015; 136():69-97. PubMed ID: 26615093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foxp3+ regulatory T-cell homeostasis quantitatively differs in murine peripheral lymph nodes and spleen.
    Milanez-Almeida P; Meyer-Hermann M; Toker A; Khailaie S; Huehn J
    Eur J Immunol; 2015 Jan; 45(1):153-66. PubMed ID: 25330759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thymic and peripheral differentiation of regulatory T cells.
    Lee HM; Bautista JL; Hsieh CS
    Adv Immunol; 2011; 112():25-71. PubMed ID: 22118406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic control of thymic Treg-cell development.
    Kitagawa Y; Ohkura N; Sakaguchi S
    Eur J Immunol; 2015 Jan; 45(1):11-6. PubMed ID: 25348287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Function of Effector Regulatory T Cells.
    Teh PP; Vasanthakumar A; Kallies A
    Prog Mol Biol Transl Sci; 2015; 136():155-74. PubMed ID: 26615096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Egress of mature murine regulatory T cells from the thymus requires RelA.
    Fukazawa T; Hiraiwa N; Umemura T; Mise-Omata S; Obata Y; Doi T
    J Immunol; 2015 Apr; 194(7):3020-8. PubMed ID: 25725099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory T Cell Heterogeneity in the Thymus: Impact on Their Functional Activities.
    Santamaria JC; Borelli A; Irla M
    Front Immunol; 2021; 12():643153. PubMed ID: 33643324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-intrinsic NF-κB activation is critical for the development of natural regulatory T cells in mice.
    Gückel E; Frey S; Zaiss MM; Schett G; Ghosh S; Voll RE
    PLoS One; 2011; 6(5):e20003. PubMed ID: 21625598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH; Turner NL; Mayrhofer G
    J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell Transcriptomics Reveals Discrete Steps in Regulatory T Cell Development in the Human Thymus.
    Morgana F; Opstelten R; Slot MC; Scott AM; van Lier RAW; Blom B; Mahfouz A; Amsen D
    J Immunol; 2022 Jan; 208(2):384-395. PubMed ID: 34937744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-Dependent Changes in Regulatory T Lymphocyte Development and Function: A Mini-Review.
    Darrigues J; van Meerwijk JPM; Romagnoli P
    Gerontology; 2018; 64(1):28-35. PubMed ID: 28704827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of antigen specific CD4(+)CD25(+)Foxp3(+)T regulatory cells from naïve natural thymic derived T regulatory cells.
    Hall BM; Tran GT; Robinson CM; Hodgkinson SJ
    Int Immunopharmacol; 2015 Oct; 28(2):875-86. PubMed ID: 25882104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues.
    Lee JH; Kang SG; Kim CH
    J Immunol; 2007 Jan; 178(1):301-11. PubMed ID: 17182567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory T Cell Development in the Thymus.
    Owen DL; Sjaastad LE; Farrar MA
    J Immunol; 2019 Oct; 203(8):2031-2041. PubMed ID: 31591259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-step process for thymic regulatory T cell development.
    Lio CW; Hsieh CS
    Immunity; 2008 Jan; 28(1):100-11. PubMed ID: 18199417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans.
    Himmel ME; MacDonald KG; Garcia RV; Steiner TS; Levings MK
    J Immunol; 2013 Mar; 190(5):2001-8. PubMed ID: 23359504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thymic production of human FOXP3(+) regulatory T cells is stable but does not correlate with peripheral FOXP3 expression.
    Tuovinen H; Laurinolli TT; Rossi LH; Pekkarinen PT; Mattila I; Arstila TP
    Immunol Lett; 2008 May; 117(2):146-53. PubMed ID: 18321596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thymic niche does not limit development of the naturally diverse population of mouse regulatory T lymphocytes.
    Romagnoli P; Dooley J; Enault G; Vicente R; Malissen B; Liston A; van Meerwijk JP
    J Immunol; 2012 Oct; 189(8):3831-7. PubMed ID: 22988035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells.
    Koizumi SI; Ishikawa H
    Cells; 2019 Aug; 8(8):. PubMed ID: 31434282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.