These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 2661527)
1. Accumulation of 3-(N-morpholino)propanesulfonate by osmotically stressed Escherichia coli K-12. Cayley S; Record MT; Lewis BA J Bacteriol; 1989 Jul; 171(7):3597-602. PubMed ID: 2661527 [TBL] [Abstract][Full Text] [Related]
2. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. Cayley S; Lewis BA; Record MT J Bacteriol; 1992 Mar; 174(5):1586-95. PubMed ID: 1537801 [TBL] [Abstract][Full Text] [Related]
3. Roles of cytoplasmic osmolytes, water, and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine. Cayley S; Record MT Biochemistry; 2003 Nov; 42(43):12596-609. PubMed ID: 14580206 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. Cayley S; Lewis BA; Guttman HJ; Record MT J Mol Biol; 1991 Nov; 222(2):281-300. PubMed ID: 1960728 [TBL] [Abstract][Full Text] [Related]
5. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Larsen PI; Sydnes LK; Landfald B; Strøm AR Arch Microbiol; 1987 Feb; 147(1):1-7. PubMed ID: 2883950 [TBL] [Abstract][Full Text] [Related]
6. Accumulation of trehalose by Escherichia coli K-12 at high osmotic pressure depends on the presence of amber suppressors. Rod ML; Alam KY; Cunningham PR; Clark DP J Bacteriol; 1988 Aug; 170(8):3601-10. PubMed ID: 3042755 [TBL] [Abstract][Full Text] [Related]
7. Betaine modulates intracellular thiol and potassium levels in Escherichia coli in medium with high osmolarity and alkaline pH. Smirnova G; Oktyabrsky O Arch Microbiol; 1995 Jan; 163(1):76-8. PubMed ID: 7710325 [TBL] [Abstract][Full Text] [Related]
8. Escherichia coli accumulates the eukaryotic osmolyte taurine at high osmolarity. McLaggan D; Epstein W FEMS Microbiol Lett; 1991 Jun; 65(2):209-13. PubMed ID: 1884995 [TBL] [Abstract][Full Text] [Related]
9. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. Cayley S; Record MT J Mol Recognit; 2004; 17(5):488-96. PubMed ID: 15362109 [TBL] [Abstract][Full Text] [Related]
10. Impairment of nucleoid segregation and cell division at high osmolarity in a strain of Escherichia coli overproducing the chaperone DnaK. Meury J; Bahloul A; Kohiyama M FEMS Microbiol Lett; 1993 Oct; 113(1):93-9. PubMed ID: 8243989 [TBL] [Abstract][Full Text] [Related]
11. Biofilm formation in Escherichia coli is affected by 3-(N-morpholino)propane sulfonate (MOPS). Corona-Izquierdo FP; Membrillo-Hernández J Res Microbiol; 2002 Apr; 153(3):181-5. PubMed ID: 12002568 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. Lucht JM; Bremer E FEMS Microbiol Rev; 1994 May; 14(1):3-20. PubMed ID: 8011357 [TBL] [Abstract][Full Text] [Related]
13. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Le Rudulier D; Bouillard L Appl Environ Microbiol; 1983 Jul; 46(1):152-9. PubMed ID: 6351742 [TBL] [Abstract][Full Text] [Related]
14. Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine. Kunin CM; Hua TH; Van Arsdale White L; Villarejo M J Infect Dis; 1992 Dec; 166(6):1311-5. PubMed ID: 1431248 [TBL] [Abstract][Full Text] [Related]
15. Competitive accumulation of betaines by Escherichia coli K-12 and derivative strains lacking betaine porters. Randall K; Lever M; Peddie BA; Chambers ST Biochim Biophys Acta; 1995 Aug; 1245(1):116-20. PubMed ID: 7654759 [TBL] [Abstract][Full Text] [Related]
16. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. Landfald B; Strøm AR J Bacteriol; 1986 Mar; 165(3):849-55. PubMed ID: 3512525 [TBL] [Abstract][Full Text] [Related]
17. Osmoadaptation in rhizobia: ectoine-induced salt tolerance. Talibart R; Jebbar M; Gouesbet G; Himdi-Kabbab S; Wróblewski H; Blanco C; Bernard T J Bacteriol; 1994 Sep; 176(17):5210-7. PubMed ID: 8071195 [TBL] [Abstract][Full Text] [Related]
18. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. McLaggan D; Naprstek J; Buurman ET; Epstein W J Biol Chem; 1994 Jan; 269(3):1911-7. PubMed ID: 7904996 [TBL] [Abstract][Full Text] [Related]
19. Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. Sutherland L; Cairney J; Elmore MJ; Booth IR; Higgins CF J Bacteriol; 1986 Nov; 168(2):805-14. PubMed ID: 3536861 [TBL] [Abstract][Full Text] [Related]
20. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. Boch J; Kempf B; Bremer E J Bacteriol; 1994 Sep; 176(17):5364-71. PubMed ID: 8071213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]