These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26615492)

  • 61. [Effects of Anions on Bromate Formation During Ozonation of Bromide-Containing Water].
    Wu Y; Wu CD; Liu LG; Yuan BJ
    Huan Jing Ke Xue; 2015 Sep; 36(9):3292-7. PubMed ID: 26717690
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Options and limitations for bromate control during ozonation of wastewater.
    Soltermann F; Abegglen C; Tschui M; Stahel S; von Gunten U
    Water Res; 2017 Jun; 116():76-85. PubMed ID: 28314210
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.
    Xia G; Wang Y; Wang B; Huang J; Deng S; Yu G
    Water Res; 2017 Jul; 118():26-38. PubMed ID: 28412550
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.
    Genuino HC; Espino MP
    Arch Environ Contam Toxicol; 2012 Apr; 62(3):369-79. PubMed ID: 21892761
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Influence of catalytic ozonation process on suppressing bromate formation potential in drinking water treatment].
    Han BJ; Ma J; Zhang T; Han HD; Shen LP; Zhang LZ
    Huan Jing Ke Xue; 2008 Mar; 29(3):665-70. PubMed ID: 18649525
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters.
    Kim JH; Von Gunten U; Mariñas BJ
    Environ Sci Technol; 2004 Apr; 38(7):2232-41. PubMed ID: 15112829
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrix.
    Cunha GS; Santos SGS; Souza-Chaves BM; Silva TFCV; Bassin JP; Dezotti MWC; Boaventura RAR; Dias MM; Lopes JCB; Vilar VJP
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33281-33293. PubMed ID: 31520394
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies.
    Yang J; Dong Z; Jiang C; Wang C; Liu H
    Chemosphere; 2019 Dec; 237():124521. PubMed ID: 31408797
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas.
    Falås P; Juárez R; Dell LA; Fransson S; Karlsson S; Cimbritz M
    Sci Total Environ; 2022 Oct; 841():156694. PubMed ID: 35714740
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of preformed monochloramine for bromate control in ozonation for potable reuse.
    Pearce R; Hogard S; Buehlmann P; Salazar-Benites G; Wilson C; Bott C
    Water Res; 2022 Mar; 211():118049. PubMed ID: 35032872
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].
    Rui M; Gao NY; Xu B; Li FS; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2495-501. PubMed ID: 17304847
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():188-97. PubMed ID: 27050745
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.
    Legube B; Parinet B; Gelinet K; Berne F; Croue JP
    Water Res; 2004 Apr; 38(8):2185-95. PubMed ID: 15087201
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Accelerated Reduction of Bromate in Frozen Solution.
    Min DW; Choi W
    Environ Sci Technol; 2017 Aug; 51(15):8368-8375. PubMed ID: 28650152
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced bromate control during ozonation: the chlorine-ammonia process.
    Buffle MO; Galli S; von Gunten U
    Environ Sci Technol; 2004 Oct; 38(19):5187-95. PubMed ID: 15506216
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Applying UV absorbance and fluorescence indices to estimate inactivation of bacteria and formation of bromate during ozonation of water and wastewater effluent.
    Wu J; Cheng S; Cai MH; Wu YP; Li Y; Wu JC; Li AM; Li WT
    Water Res; 2018 Nov; 145():354-364. PubMed ID: 30172218
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phenols and amine induced HO* generation during the initial phase of natural water ozonation.
    Buffle MO; von Gunten U
    Environ Sci Technol; 2006 May; 40(9):3057-63. PubMed ID: 16719111
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater.
    Kämmler J; Zoumpouli GA; Sellmann J; Chew YMJ; Wenk J; Ernst M
    Water Res; 2022 Aug; 221():118739. PubMed ID: 35716412
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Decomposition of acetone by hydrogen peroxide/ozone process in a rotating packed contactor.
    Ku Y; Huang YJ; Chen HW; Hou WM
    Water Environ Res; 2011 Jul; 83(7):588-93. PubMed ID: 21790076
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H
    Srithep S; Phattarapattamawong S
    Chemosphere; 2017 Jun; 176():25-31. PubMed ID: 28254711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.