BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

748 related articles for article (PubMed ID: 26615571)

  • 1. The neurodevelopmental differences of increasing verbal working memory demand in children and adults.
    Vogan VM; Morgan BR; Powell TL; Smith ML; Taylor MJ
    Dev Cogn Neurosci; 2016 Feb; 17():19-27. PubMed ID: 26615571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder.
    Vogan VM; Francis KE; Morgan BR; Smith ML; Taylor MJ
    J Neurodev Disord; 2018 Jun; 10(1):19. PubMed ID: 29859034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms of two different verbal working memory tasks: A VLSM study.
    Ivanova MV; Dragoy O; Kuptsova SV; Yu Akinina S; Petrushevskii AG; Fedina ON; Turken A; Shklovsky VM; Dronkers NF
    Neuropsychologia; 2018 Jul; 115():25-41. PubMed ID: 29526647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation.
    O'Hare ED; Lu LH; Houston SM; Bookheimer SY; Sowell ER
    Neuroimage; 2008 Oct; 42(4):1678-85. PubMed ID: 18586110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemispheric lateralization of verbal and spatial working memory during adolescence.
    Nagel BJ; Herting MM; Maxwell EC; Bruno R; Fair D
    Brain Cogn; 2013 Jun; 82(1):58-68. PubMed ID: 23511846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural substrates associated with the concurrent performance of dual working memory tasks.
    Yoo SS; Paralkar G; Panych LP
    Int J Neurosci; 2004 Jun; 114(6):613-31. PubMed ID: 15204056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex.
    Walter H; Bretschneider V; Grön G; Zurowski B; Wunderlich AP; Tomczak R; Spitzer M
    Cortex; 2003; 39(4-5):897-911. PubMed ID: 14584558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working memory in preterm-born adults: load-dependent compensatory activity of the posterior default mode network.
    Daamen M; Bäuml JG; Scheef L; Sorg C; Busch B; Baumann N; Bartmann P; Wolke D; Wohlschläger A; Boecker H
    Hum Brain Mapp; 2015 Mar; 36(3):1121-37. PubMed ID: 25413496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic shifts in brain network activation during supracapacity working memory task performance.
    Van Snellenberg JX; Slifstein M; Read C; Weber J; Thompson JL; Wager TD; Shohamy D; Abi-Dargham A; Smith EE
    Hum Brain Mapp; 2015 Apr; 36(4):1245-64. PubMed ID: 25422039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-dependent modulation of working memory for identity monitoring: A functional MRI study.
    Duggirala SX; Saharan S; Raghunathan P; Mandal PK
    Brain Cogn; 2016 Feb; 102():55-64. PubMed ID: 26774462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load.
    Vogan VM; Morgan BR; Lee W; Powell TL; Smith ML; Taylor MJ
    J Neurodev Disord; 2014; 6(1):19. PubMed ID: 25057329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and meta-analyses.
    Andre J; Picchioni M; Zhang R; Toulopoulou T
    Neuroimage Clin; 2016; 12():940-948. PubMed ID: 27995059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory.
    Majerus S; Cowan N; Péters F; Van Calster L; Phillips C; Schrouff J
    Cereb Cortex; 2016 Jan; 26(1):166-79. PubMed ID: 25146374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia.
    Wolf RC; Sambataro F; Lohr C; Steinbrink C; Martin C; Vasic N
    Neuropsychologia; 2010 Jan; 48(1):309-18. PubMed ID: 19782695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder.
    Moores KA; Clark CR; McFarlane AC; Brown GC; Puce A; Taylor DJ
    Psychiatry Res; 2008 Jul; 163(2):156-70. PubMed ID: 18455372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical utility of the N-back task in functional neuroimaging studies of working memory.
    Jacola LM; Willard VW; Ashford JM; Ogg RJ; Scoggins MA; Jones MM; Wu S; Conklin HM
    J Clin Exp Neuropsychol; 2014; 36(8):875-86. PubMed ID: 25252868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of spatial and verbal working memory capacity in the human brain.
    Thomason ME; Race E; Burrows B; Whitfield-Gabrieli S; Glover GH; Gabrieli JD
    J Cogn Neurosci; 2009 Feb; 21(2):316-32. PubMed ID: 18510448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD; Bullmore ET; Sharma T
    Neuroimage; 2000 Nov; 12(5):495-503. PubMed ID: 11034857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.