These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26615590)

  • 1. Responses to phosphate deprivation in yeast cells.
    Yadav KK; Singh N; Rajasekharan R
    Curr Genet; 2016 May; 62(2):301-7. PubMed ID: 26615590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae.
    Yadav KK; Singh N; Rajasekharan R
    Mol Microbiol; 2015 Oct; 98(3):456-72. PubMed ID: 26179227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.
    Yadav KK; Rajasekharan R
    Curr Genet; 2016 Nov; 62(4):841-851. PubMed ID: 26979516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase.
    Reddy VS; Singh AK; Rajasekharan R
    J Biol Chem; 2008 Apr; 283(14):8846-54. PubMed ID: 18234677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rpl12p affects the transcription of the PHO pathway high-affinity inorganic phosphate transporters and repressible phosphatases.
    Tu WY; Huang YC; Liu LF; Chang LH; Tam MF
    Yeast; 2011 Jun; 28(6):481-93. PubMed ID: 21469193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RNA polymerase I subunit Rpa12p interacts with the stress-responsive transcription factor Msn4p to regulate lipid metabolism in budding yeast.
    Yadav KK; Singh N; Rajvanshi PK; Rajasekharan R
    FEBS Lett; 2016 Oct; 590(20):3559-3573. PubMed ID: 27637775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.
    Tani M; Kuge O
    Yeast; 2014 Apr; 31(4):145-58. PubMed ID: 24578286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory role of phosphatidate phosphatase in triacylglycerol synthesis of Saccharomyces cerevisiae.
    Hosaka K; Yamashita S
    Biochim Biophys Acta; 1984 Oct; 796(1):110-7. PubMed ID: 6091769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway.
    Parrish WR; Stefan CJ; Emr SD
    J Cell Sci; 2005 Dec; 118(Pt 23):5589-601. PubMed ID: 16306222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity.
    Tuleva B; Vasileva-Tonkova E; Galabova D
    FEMS Microbiol Lett; 1998 Apr; 161(1):139-44. PubMed ID: 9561742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.
    James AW; Nachiappan V
    Bioresour Technol; 2014 Jan; 151():100-5. PubMed ID: 24212129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of polyphosphate polymerases and deletion of polyphosphate phosphatases shorten the replicative lifespan in yeast.
    Umeda C; Nakajima T; Maruhashi T; Tanigawa M; Maeda T; Mukai Y
    FEBS Lett; 2023 Sep; 597(18):2316-2333. PubMed ID: 37574219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.
    Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J
    J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide degradation and ribose salvage in yeast.
    Xu YF; Létisse F; Absalan F; Lu W; Kuznetsova E; Brown G; Caudy AA; Yakunin AF; Broach JR; Rabinowitz JD
    Mol Syst Biol; 2013 May; 9():665. PubMed ID: 23670538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of zinc deprivation on the lipid metabolism of budding yeast.
    Singh N; Yadav KK; Rajasekharan R
    Curr Genet; 2017 Dec; 63(6):977-982. PubMed ID: 28500379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways.
    Schulz JC; Zampieri M; Wanka S; von Mering C; Sauer U
    Sci Signal; 2014 Nov; 7(353):rs6. PubMed ID: 25429078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway.
    Cadière A; Galeote V; Dequin S
    FEMS Yeast Res; 2010 Nov; 10(7):819-27. PubMed ID: 20738406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pho5p and newly identified nucleotide pyrophosphatases/ phosphodiesterases regulate extracellular nucleotide phosphate metabolism in Saccharomyces cerevisiae.
    Kennedy EJ; Pillus L; Ghosh G
    Eukaryot Cell; 2005 Nov; 4(11):1892-901. PubMed ID: 16278456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae.
    Tangsombatvichit P; Semkiv MV; Sibirny AA; Jensen LT; Ratanakhanokchai K; Soontorngun N
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.