These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26615590)

  • 21. Discovery and Functional Characterization of a Yeast Sugar Alcohol Phosphatase.
    Xu YF; Lu W; Chen JC; Johnson SA; Gibney PA; Thomas DG; Brown G; May AL; Campagna SR; Yakunin AF; Botstein D; Rabinowitz JD
    ACS Chem Biol; 2018 Oct; 13(10):3011-3020. PubMed ID: 30240188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins.
    He Y; Swaminathan A; Lopes JM
    Mol Microbiol; 2012 Jan; 83(2):395-407. PubMed ID: 22182244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae.
    Auesukaree C; Fuchigami I; Homma T; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2008 Jan; 365(4):821-5. PubMed ID: 18035052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p.
    Santhanam A; Hartley A; Düvel K; Broach JR; Garrett S
    Eukaryot Cell; 2004 Oct; 3(5):1261-71. PubMed ID: 15470255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The minimum domain of Pho81 is not sufficient to control the Pho85-Rim15 effector branch involved in phosphate starvation-induced stress responses.
    Swinnen E; Rosseels J; Winderickx J
    Curr Genet; 2005 Jul; 48(1):18-33. PubMed ID: 15926040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.
    Secco D; Wang C; Shou H; Whelan J
    FEBS Lett; 2012 Feb; 586(4):289-95. PubMed ID: 22285489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Guardian Angel Phosphatase for Mainline Carbon Metabolism.
    Beaudoin GA; Hanson AD
    Trends Biochem Sci; 2016 Nov; 41(11):893-894. PubMed ID: 27544441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae.
    Canadell D; González A; Casado C; Ariño J
    Mol Microbiol; 2015 Feb; 95(3):555-72. PubMed ID: 25425491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses.
    Kaino T; Takagi H
    Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional response of Saccharomyces cerevisiae to potassium starvation.
    Anemaet IG; van Heusden GP
    BMC Genomics; 2014 Nov; 15(1):1040. PubMed ID: 25432801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae.
    Soontorngun N
    Curr Genet; 2017 Feb; 63(1):1-7. PubMed ID: 27180089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of a gene encoding glycerol 3-phosphatase from Candida albicans impairs intracellular glycerol accumulation-mediated salt-tolerance.
    Fan J; Whiteway M; Shen SH
    FEMS Microbiol Lett; 2005 Apr; 245(1):107-16. PubMed ID: 15796987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering.
    Hong ME; Lee KS; Yu BJ; Sung YJ; Park SM; Koo HM; Kweon DH; Park JC; Jin YS
    J Biotechnol; 2010 Aug; 149(1-2):52-9. PubMed ID: 20600383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A family of metal-dependent phosphatases implicated in metabolite damage-control.
    Huang L; Khusnutdinova A; Nocek B; Brown G; Xu X; Cui H; Petit P; Flick R; Zallot R; Balmant K; Ziemak MJ; Shanklin J; de Crécy-Lagard V; Fiehn O; Gregory JF; Joachimiak A; Savchenko A; Yakunin AF; Hanson AD
    Nat Chem Biol; 2016 Aug; 12(8):621-7. PubMed ID: 27322068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses.
    Mao C; Saba JD; Obeid LM
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):667-75. PubMed ID: 10477278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.
    Nahas JV; Iosue CL; Shaik NF; Selhorst K; He BZ; Wykoff DD
    G3 (Bethesda); 2018 Jul; 8(7):2333-2343. PubMed ID: 29748198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZAP1-mediated modulation of triacylglycerol levels in yeast by transcriptional control of mitochondrial fatty acid biosynthesis.
    Singh N; Yadav KK; Rajasekharan R
    Mol Microbiol; 2016 Apr; 100(1):55-75. PubMed ID: 26711224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast sphingosine-1-phosphate phosphatases: assay, expression, deletion, purification, and cellular localization by GFP tagging.
    Mao C; Obeid LM
    Methods Enzymol; 2000; 311():223-32. PubMed ID: 10563329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae.
    Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.