These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26615590)

  • 41. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae.
    Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis.
    Srinivasan S; Seaman M; Nemoto Y; Daniell L; Suchy SF; Emr S; De Camilli P; Nussbaum R
    Eur J Cell Biol; 1997 Dec; 74(4):350-60. PubMed ID: 9438131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SVF1 regulates cell survival by affecting sphingolipid metabolism in Saccharomyces cerevisiae.
    Brace JL; Lester RL; Dickson RC; Rudin CM
    Genetics; 2007 Jan; 175(1):65-76. PubMed ID: 17057230
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Dcr2p phosphatase destabilizes Sic1p in Saccharomyces cerevisiae.
    Pathak R; Blank HM; Guo J; Ellis S; Polymenis M
    Biochem Biophys Res Commun; 2007 Sep; 361(3):700-4. PubMed ID: 17673172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae.
    Granath K; Modig T; Forsmark A; Adler L; Lidén G
    Yeast; 2005 Dec; 22(16):1257-68. PubMed ID: 16358322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast protein phosphatases Ptp2p and Msg5p are involved in G1-S transition, CLN2 transcription, and vacuole morphogenesis.
    Hermansyah ; Sugiyama M; Kaneko Y; Harashima S
    Arch Microbiol; 2009 Sep; 191(9):721-33. PubMed ID: 19680630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease.
    Bultynck G; Heath VL; Majeed AP; Galan JM; Haguenauer-Tsapis R; Cyert MS
    Mol Cell Biol; 2006 Jun; 26(12):4729-45. PubMed ID: 16738335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes.
    Springer M; Wykoff DD; Miller N; O'Shea EK
    PLoS Biol; 2003 Nov; 1(2):E28. PubMed ID: 14624238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast Saccharomyces cerevisiae.
    Xu Z; Yaguchi S; Tsurugi K
    Biochem J; 2004 Oct; 383(Pt 1):171-8. PubMed ID: 15228382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae.
    Kang HJ; Jeong SJ; Kim KN; Baek IJ; Chang M; Kang CM; Park YS; Yun CW
    Biochem J; 2014 Feb; 457(3):391-400. PubMed ID: 24206186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae.
    Kho CW; Lee PY; Bae KH; Kang S; Cho S; Lee DH; Sun CH; Yi GS; Park BC; Park SG
    J Microbiol Biotechnol; 2008 Feb; 18(2):270-82. PubMed ID: 18309271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion.
    Carman GM; Han GS
    Biochim Biophys Acta; 2007 Mar; 1771(3):322-30. PubMed ID: 16807089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Triacylglycerol biosynthesis in yeast.
    Sorger D; Daum G
    Appl Microbiol Biotechnol; 2003 May; 61(4):289-99. PubMed ID: 12743757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. THE ABSENCE OF A CORRELATION BETWEEN THE EXTERNAL PHOSPHATASE ACTIVITY OF YEAST AND PHOSPHATE UPTAKE.
    BORSTPAUWELS GW
    Biochim Biophys Acta; 1964 Dec; 93():659-61. PubMed ID: 14263167
    [No Abstract]   [Full Text] [Related]  

  • 56. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases.
    Possik E; Madiraju SRM; Prentki M
    Biochimie; 2017 Dec; 143():18-28. PubMed ID: 28826615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acid phosphatase. VII. Yeast phosphomonoesterase; isolation procedure and stability characteristics.
    TSUBOI KK; WIENER G; HUDSON PB
    J Biol Chem; 1957 Feb; 224(2):621-35. PubMed ID: 13405892
    [No Abstract]   [Full Text] [Related]  

  • 58. O-phosphoserine phosphatase from Baker's yeast.
    SCHRAMM M
    J Biol Chem; 1958 Nov; 233(5):1169-71. PubMed ID: 13598753
    [No Abstract]   [Full Text] [Related]  

  • 59. Characterization of a phosphatase specific for 2-deoxyglucose-6-phosphate in a yeast mutant.
    Martin M; Heredia CF
    FEBS Lett; 1977 Nov; 83(2):245-8. PubMed ID: 201492
    [No Abstract]   [Full Text] [Related]  

  • 60. Phosphate-water exchange reaction catalyzed by inorganic pyrophosphatase of yeast.
    COHN M
    J Biol Chem; 1958 Jan; 230(1):369-79. PubMed ID: 13502406
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.